Electronic and Ionic Transport in Block Copolymers

嵌段共聚物中的电子和离子传输

基本信息

  • 批准号:
    0965812
  • 负责人:
  • 金额:
    $ 20.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

0965812WangIntellectual MeritThis energy-and manufacturing related project is a collaborative experimental and theoretical study of the effect of morphology on electron and ion conduction in nanostructured polymer materials with clearly defined independent channels for electronic and ionic transport. Regio-regular poly(3-hexylthiophene)-block-polyethyleneoxide (PHT-PEO) will be synthesized by coupling aldehyde terminated PHT chains with living styryl-PEO anions, and doped with the appropriate salts to make the PHT domain electron-conducting and the PEO domain ion-conducting. The morphology of the mixtures and charge carrier distribution will be characterized by standard techniques such as electron microscopy and X-ray scattering, as well as element-specific techniques such as energy filtered EM and resonant soft X-ray scattering. A combination of DC- and AC-impedance spectroscopy will be used to measure the ionic and electronic conductance of the doped copolymer. Concurrently with the experimental efforts, theoretical and simulation studies will be performed to understand the underpinnings of the experimental observations regarding morphology and dopant distribution, and to provide insight for designing second generation systems with optimal properties. In particular, a ribbon-coil model will be developed to predict the morphology of PHT-PEO systems. Theories that incorporate both ion solvation and chain deformation will be used to predict dopant distribution. Computer simulations used to predict ion transport will be validated using experimental measurements.This work will be the first study of the simultaneous electronic and ionic transport in nanostructured polymer materials. The combined experimental and theoretical efforts will yield rich insights into: how charge carries are distributed in nanostructured materials, how the motion of charge carriers couples to the segmental dynamics of the polymers, how the local nanostructure and large-scale grain structure influences charge transport, and how doping agents alter the morphology of the self-assembled polymeric structures. These insights may lead to entirely new design strategies for electrode architectures in rechargeable batteries and fuel cells.Broader ImpactsThe research is in sync with the nationwide efforts at creating and ultimately manufacturing clean and more efficient energy technologies. The systems studied have potential to directly translate into new battery technologies. Furthermore, in both PIs? home departments,there is an increasing need among the graduate students to work in energy-related research areas; the projects fulfill that need by providing them with the opportunity to do research in a technologically important area, while receiving a multidisciplinary training in theory, simulation, modeling, thermodynamics, synthesis and characterization of polymers, optics, scattering, and electrochemistry. Equally important, the proposed research serves as a platform for developing new educational packages for high school and undergraduate students. In this respect, the PIs will develop and execute lectures and demonstrations on electrochemistry and batteries as part of the Math and Science Summer Academy program at Berkeley
0965812 Wangintellectual Thisthis Energy-Inderaturing与制造相关的项目是对形态对电子和离子传输独立通道的纳米结构聚合物材料中形态对电子和离子传导的影响的协作实验和理论研究。区域规范的聚(3-己基噻吩)-Block-poly-氧化氧化物(PHT-PEO)将通过耦合醛与生物型styryl-peo阴离子终止的PHT链合成,并用适当的盐掺杂,以使PHT域电导型域电导能力使PHT域电导量导致PEO域离子导导。混合物和电荷载体分布的形态将以标准技术为特征,例如电子显微镜和X射线散射,以及元素特异性技术,例如能量过滤EM和谐振软X射线散射。 DC-和AC-阻抗光谱的组合将用于测量掺杂共聚物的离子和电子电导。同时将进行实验性工作,理论和仿真研究将进行了解,以了解有关形态和掺杂分布的实验观察的基础,并为设计具有最佳特性的第二代系统提供洞察力。特别是,将开发出一个带状模型,以预测PHT-PEO系统的形态。同时结合离子溶剂化和链变形的理论将用于预测掺杂剂的分布。用于预测离子传输的计算机模拟将通过实验测量进行验证。这项工作将是纳米结构聚合物材料中同时电子和离子传输的首次研究。合并的实验和理论努力将产生丰富的见解:电荷携带如何分布在纳米结构材料中,电荷载体夫妻的运动如何向聚合物的分段动力学,局部纳米结构和大规模晶粒结构如何影响电荷运输,电荷运输,电荷运输,以及掺杂剂如何改变自组装聚合结构的形态。这些见解可能会导致可充电电池和燃料电池中电极体系结构的全新设计策略。BODARDEREAKENTS研究与全国范围内的努力同步,在全国范围内创建和最终制造清洁,更有效的能源技术。所研究的系统有可能直接转化为新的电池技术。此外,在两个pis中?内部部门,研究生越来越需要在能源有关的研究领域工作。这些项目通过为他们提供了在技术重要领域进行研究的机会,同时接受了理论,模拟,建模,热力学,光学学,光学,光学,散射和电化学的综合和表征的跨学科培训,从而满足了这一需求。同样重要的是,拟议的研究是为高中和本科生开发新的教育包的平台。在这方面,PI将作为伯克利数学和科学夏季学院计划的一部分开发和执行有关电化学和电池的演讲和演示

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhen-Gang Wang其他文献

Influence of Topology on the Free Energy and Metric Properties of an Ideal Ring Polymer Confined in a Slit
拓扑结构对狭缝中理想环状聚合物自由能和公制性质的影响
  • DOI:
    10.1021/acs.macromol.5b02026
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Bing Li;Zhao-Yan Sun;Li-Jia An;Zhen-Gang Wang
  • 通讯作者:
    Zhen-Gang Wang
Leaching of PVP from PAN/PVP Blending Membranes: A Comparative Study of Asymmetric and Dense Membranes
PAN/PVP 共混膜中 PVP 的浸出:非对称膜和致密膜的比较研究
Density-Functional Theory for Mixtures of AB Random Copolymer and CO2
AB 无规共聚物和 CO2 混合物的密度泛函理论
  • DOI:
    10.1021/acs.macromol.5b01122
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Xiaofei Xu;Diego E. Cristancho;Stephane Costeux;Zhen-Gang Wang
  • 通讯作者:
    Zhen-Gang Wang
A Novel Process for the Post-treatment of Polyacrylonitrile/Poly(N-vinyl-2-pyrrolidone) Blending Membranes: Performance Improvement and Possible Mechanism
聚丙烯腈/聚(N-乙烯基-2-吡咯烷酮)共混膜后处理新工艺:性能改进和可能机制
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ling-Shu Wan;Zhi-Kang Xu*;Xiao-Jun Huang;Ai-Fu Che;Zhen-Gang Wang
  • 通讯作者:
    Zhen-Gang Wang
Acrylonitrile-Based Copolymer Membranes Containing Reactive Groups: Modulate the Morphologies and Performance by Nonsolvents
含有反应基团的丙烯腈共聚物膜:通过非溶剂调节形态和性能
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhen-Gang Wang;Zhi-Kang Xu*;Jian-Qin Wang;Ling-Shu Wan;Xiao-Jun Huang
  • 通讯作者:
    Xiao-Jun Huang

Zhen-Gang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhen-Gang Wang', 18)}}的其他基金

Statistical Mechanics of Semiflexible Polymers
半柔性聚合物的统计力学
  • 批准号:
    9970589
  • 财政年份:
    1999
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Continuing Grant
Block Copolymer Self-Assembly: Morphologies, Thermo-mechanical Behaviors and Kinetic Pathways
嵌段共聚物自组装:形态、热机械行为和动力学途径
  • 批准号:
    9531914
  • 财政年份:
    1996
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant

相似国自然基金

内陆盐沼湿地植物离子吸收运输分配对碳密度的影响
  • 批准号:
    42361008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
盐碱胁迫下膜泡运输因子AtSYP71参与的细胞pH和离子稳态调控机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
特殊细胞壁结构调控质外体与共质体离子运输途径的分子基础和作用机制
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    297 万元
  • 项目类别:
    重点项目
CBLα/β-CIPKβ-MTP8/11信号途径参与拟南芥响应高锰胁迫的分子机制
  • 批准号:
    31900236
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
心肌特异性过表达TGFBR3启动Kir2.1钾通道运输促短QT综合征的作用与分子调节机制
  • 批准号:
    31871175
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Revealing the Influence of Electrolyte Solvents and Ions on Electronic and Ionic Transport in Electrochemically Doped Conjugated Polymers
揭示电解质溶剂和离子对电化学掺杂共轭聚合物中电子和离子传输的影响
  • 批准号:
    2349830
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Dynamically structural control and development of energy-storing type fuel cells based on ionic electronic transport
基于离子电子输运的储能型燃料电池的动态结构控制与开发
  • 批准号:
    17H00801
  • 财政年份:
    2017
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Ionic/electronic coupling to control the charge transport and optical properties of semiconductors
离子/电子耦合控制半导体的电荷传输和光学特性
  • 批准号:
    355833-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Discovery Grants Program - Individual
Ionic/electronic coupling to control the charge transport and optical properties of semiconductors
离子/电子耦合控制半导体的电荷传输和光学特性
  • 批准号:
    355833-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Discovery Grants Program - Individual
Ionic/electronic coupling to control the charge transport and optical properties of semiconductors
离子/电子耦合控制半导体的电荷传输和光学特性
  • 批准号:
    355833-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了