CAREER: Deciphering Ionic Current Signatures of Polymer Transport through a Nanopore

职业:破译聚合物通过纳米孔传输的离子电流特征

基本信息

项目摘要

TECHNICAL SUMMARYThis CAREER award supports computational and theoretical research and education on translocation of polymers through nanopores. Nanopores are ubiquitous in nature and engineering. Their functionality ranges from transport of solutes in and out of a living cell to chemical and biological separation and drug delivery. This research program investigates electric field-driven transport of a prototypical polymer DNA molecule through biological and synthetic nanopores and accompanying changes in co-passing ionic current used to characterize the transport by experiment. Nanopore translocation experiments enable testing of physical models of diverse nanoscale phenomena at the single-molecule level. They provide information about nanoscale electrostatics and hydrodynamics, solvation and entropic forces, selectro-osmotic effecs, atomic-scale friction, adhesion, and conformational dynamics of biopolymers. The fundamental difficulty in interpretation of the nanopore translocation experiments is that the microscopic processes of interest are characterized indirectly, by measuring their influence on the nanopore current. In order to more fully exploit the unprecedented sensitivity of nanopore probes, a quantitative physical model is required to relate the microscopic events in the nanopore to the measured ionic current. The PI aims to provide a comprehensive physical description of polymer transport through biological and synthetic nanopores through an innovative modeling method that combines all-atom molecular dynamics, Brownian dynamics, and multiscale simulations. This method will preserve the atomic-level information of the molecular dynamics method, while capitalizing on the computational efficiently of the Brownian dynamics and multiscale methods. The approach will exploit the thousandfold difference in the time scales of ion and polymer transport. The process of DNA transport through a nanopore will be characterized in statistical terms. The obtained ensemble of DNA conformations will be used to compute the corresponding ionic current blockades. The final step of the approach is to take into account the electro-kinetic effect that couples the ionic current to the polymer conformation. The main difference of this approach from the coarse-grained models that have been proposed to date is in preserving the all-atom information about the structure of the solute and nanopore and determining the ionic current blockade to the experimental accuracy. Combined with experiment, such predictive capability will greatly enhance utility of nanopores as tools to probe nanoscale systems and processes.This research program could have direct impact on nanopore applications in biosensing and nanotechnology, such as instrumentation for personal genomics, nanofluidic electronics, and single molecule manipulation. The educational activities will focus on developing a laboratory course and lecture demonstrations for an undergraduate biological physics course. Another major undertaking is transforming a graduate course "Physics of Nanomachines," into a textbook, which will describe the physics of nanoscale interactions that governs operation of miniature biological, synthetic, and hybrid machines. One very specific objective of the program is to recruit a minority student to carry out the research activities. The program will provide the research community with modeling methods and tools implemented by professional programmers in the popular Open Source programs, including a set of self-contained tutorials containing all necessary instructions and examples. NON-TECHNICAL SUMMARY:This CAREER award supports computational and theoretical research and education to simulate long chain-like molecules being pulled through tiny holes that have diameters the size of a large molecule. Of particular interest are long chain-like molecules produced by living organisms. These are often called biopolymers. For a brief moment, the molecule is confined to the small volume defined by the tiny molecule-sized hole, also known as a nanopore, and its properties can be examined section by section. It is thought that through the process of pulling the biopolymer through the tiny hole the shape and chemical makeup of the molecular string can be determined. The PI will focus on developing a comprehensive physical description of this process using novel computational modeling methods. The understanding that is gained could have direct impact on applications in biosensing and nanotechnology, such as sequencing DNA, future electronic devices, and single molecule manipulation. The educational activities will focus on developing a laboratory course and lecture demonstrations for an undergraduate biological physics course. Another major undertaking is transforming a graduate course "Physics of Nanomachines," into a textbook, which will describe the physics of interactions that governs operation of miniature biological, synthetic, and hybrid machines. One very specific objective of the program is to recruit a minority student to carry out the research activities. The program will provide the research community with modeling methods and tools implemented by professional programmers in the popular Open Source programs, including a set of self-contained tutorials containing all necessary instructions and examples.
技术摘要该职业奖支持聚合物通过纳米孔易位的计算和理论研究及教育。纳米孔在自然界和工程中无处不在。它们的功能范围从运输溶质进出活细胞到化学和生物分离以及药物输送。该研究项目研究电场驱动的原型聚合物 DNA 分子通过生物和合成纳米孔的传输,以及伴随的共通离子电流的变化,用于通过实验表征传输。纳米孔易位实验能够在单分子水平上测试各种纳米级现象的物理模型。它们提供有关纳米级静电和流体动力学、溶剂化和熵力、选择渗透效应、原子级摩擦、粘附和生物聚合物构象动力学的信息。解释纳米孔易位实验的根本困难在于,通过测量感兴趣的微观过程对纳米孔电流的影响来间接表征它们。为了更充分地利用纳米孔探针前所未有的灵敏度,需要定量物理模型将纳米孔中的微观事件与测量的离子电流联系起来。该 PI 旨在通过结合全原子分子动力学、布朗动力学和多尺度模拟的创新建模方法,提供聚合物通过生物和合成纳米孔传输的全面物理描述。该方法将保留分子动力学方法的原子级信息,同时利用布朗动力学和多尺度方法的计算效率。该方法将利用离子和聚合物传输时间尺度的千倍差异。 DNA 通过纳米孔的运输过程将用统计术语来表征。获得的 DNA 构象集合将用于计算相应的离子电流阻断。该方法的最后一步是考虑将离子电流耦合到聚合物构象的电动效应。该方法与迄今为止提出的粗粒度模型的主要区别在于保留了有关溶质和纳米孔结构的全原子信息并确定了离子电流阻断的实验精度。与实验相结合,这种预测能力将大大增强纳米孔作为探测纳米级系统和过程的工具的实用性。该研究计划可能对纳米孔在生物传感和纳米技术中的应用产生直接影响,例如个人基因组学、纳米流体电子学和单分子仪器操纵。教育活动将侧重于为本科生生物物理课程开发实验室课程和讲座演示。另一项重大任务是将研究生课程“纳米机器物理学”转变为教科书,它将描述控制微型生物、合成和混合机器运行的纳米级相互作用的物理学。该计划的一个非常具体的目标是招募一名少数族裔学生来开展研究活动。该计划将为研究社区提供由专业程序员在流行的开源程序中实现的建模方法和工具,包括一组包含所有必要说明和示例的独立教程。 非技术摘要:该职业奖支持计算和理论研究和教育,以模拟长链状分子被拉过直径与大分子大小相同的微小孔。特别令人感兴趣的是由生物体产生的长链状分子。这些通常被称为生物聚合物。在短时间内,分子被限制在由分子大小的微小孔(也称为纳米孔)定义的小体积内,并且可以逐个部分检查其特性。人们认为,通过将生物聚合物拉过小孔的过程,可以确定分子链的形状和化学组成。 PI 将专注于使用新颖的计算建模方法开发该过程的全面物理描述。所获得的理解可能会对生物传感和纳米技术的应用产生直接影响,例如 DNA 测序、未来电子设备和单分子操作。教育活动将侧重于为本科生生物物理课程开发实验室课程和讲座演示。另一项重大任务是将研究生课程“纳米机器物理学”转变为教科书,它将描述控制微型生物、合成和混合机器运行的相互作用物理学。该计划的一个非常具体的目标是招募一名少数族裔学生来开展研究活动。该计划将为研究社区提供由专业程序员在流行的开源程序中实现的建模方法和工具,包括一组包含所有必要说明和示例的独立教程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksei Aksimentiev其他文献

D1NR08002D 1..10 ++
D1NR08002D 1..10
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prabhat Tripathi;Morgan Chandler;C. Ma;eo;Ali Fallahi;Amr Makhamreh;Justin Halman;Aleksei Aksimentiev;Kirill A. Afonin;Meni Wanunu
  • 通讯作者:
    Meni Wanunu
SDS-assisted protein transport through solid-state nanopores
  • DOI:
    10.1039/c7nr02450a
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Laura Restrepo-Pérez;Shalini John;Aleksei Aksimentiev;Chirlmin Joo;Cees Dekker
  • 通讯作者:
    Cees Dekker
Multi-resolution simulation of DNA transport through large synthetic nanostructures
  • DOI:
    10.1039/d1cp04589j
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Adnan Choudhary;Christopher Maffeo;Aleksei Aksimentiev
  • 通讯作者:
    Aleksei Aksimentiev
Protein unfolding by SDS: the microscopic mechanisms and the properties of the SDS-protein assembly
  • DOI:
    10.1039/c9nr09135a
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    David Winogradoff;Shalini John;Aleksei Aksimentiev
  • 通讯作者:
    Aleksei Aksimentiev
Discrimination of RNA fiber structures using solid-state nanopores
  • DOI:
    10.1039/d1nr08002d
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Prabhat Tripathi;Morgan Chandler;Christopher Michael Maffeo;Ali Fallahi;Amr Makhamreh;Justin Halman;Aleksei Aksimentiev;Kirill A. Afonin;Meni Wanunu
  • 通讯作者:
    Meni Wanunu

Aleksei Aksimentiev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksei Aksimentiev', 18)}}的其他基金

Elements: Enabling multi-resolution simulations at the interface of biology and nanotechnology with ARBD
要素:利用 ARBD 在生物学和纳米技术的界面上实现多分辨率模拟
  • 批准号:
    2311550
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
NSF Frontera Allocation Travel Grant
NSF Frontera 分配旅行补助金
  • 批准号:
    2031623
  • 财政年份:
    2020
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Functional DNA Nanostructures
功能性 DNA 纳米结构
  • 批准号:
    1827346
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
SI2-SSE: Collaborative Research: Integrated Tools for DNA Nanostructure Design and Simulation
SI2-SSE:合作研究:DNA 纳米结构设计和模拟的集成工具
  • 批准号:
    1740212
  • 财政年份:
    2017
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Transport Properties of Self-Assembled DNA Systems
自组装 DNA 系统的传输特性
  • 批准号:
    1507985
  • 财政年份:
    2015
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

发展化学酶法聚糖编辑新技术以破译和干预半乳凝素介导的T细胞免疫抑制
  • 批准号:
    32150027
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
破译疾病组合之遗传结构:新分析框架及在心血管医学和精神病学中的应用
  • 批准号:
    31900495
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成纳米机器人的蛋白质折叠密码破译芯片设计与制造的基础理论研究
  • 批准号:
    51905097
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
iRhom2:破译葫芦巴散抑制TACE介导的肥胖相关性炎症的关键密码
  • 批准号:
    81573765
  • 批准年份:
    2015
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
Rijndael算法的新型破译方法及应用研究
  • 批准号:
    60903199
  • 批准年份:
    2009
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Postdoctoral Fellowship: OPP-PRF: Deciphering the Role of Phytoplankton Community Composition in Southern Ocean Carbon Fluxes
博士后奖学金:OPP-PRF:破译浮游植物群落组成在南大洋碳通量中的作用
  • 批准号:
    2317998
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319096
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319098
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
BRC-BIO: Deciphering the roles of RNA modifications in regulating responses to abiotic stresses in cereal crops
BRC-BIO:解读 RNA 修饰在调节谷类作物非生物胁迫反应中的作用
  • 批准号:
    2312857
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Deciphering Cellular Niches and Cross-talk in Human Heart Development (CellTalkHHD)
破译人类心脏发育中的细胞生态位和串扰 (CellTalkHHD)
  • 批准号:
    BB/Y003179/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了