CAREER: Nanoscale Ballistic Spin Transport in Semiconductors

职业:半导体中的纳米级弹道自旋输运

基本信息

  • 批准号:
    0954486
  • 负责人:
  • 金额:
    $ 41.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-02-15 至 2016-01-31
  • 项目状态:
    已结题

项目摘要

****NON-TECHNICAL ABSTRACT****Along with charge, electrons have a quantum mechanical property known as ?spin.? A future technology that would be based on the spin of electrons has been named ?spintronics.? Spintronic devices are expected to be more powerful, less expensive, lighter, and consume less energy than the present electronic devices. To develop this spin-based technology, it is necessary to study movement of spin in semiconductors. This Faculty Early Career Award supports a project that will investigate nanometer-scale spin transport in semiconductors. So far, most studies have focused on spin transport at the micrometer or even larger length scales. To integrate spintronics with nanotechnology, it is crucial to understand and control nanometer-scale spin transport in semiconductors. Such transport will take place on very short timescales. This project will address this key issue using novel laser techniques that are capable of detecting events as fast as 70 femtoseconds and spin movements as small as one hundredth of nanometer. Gallium Arsenide and its nanostructures will be used to study several key aspects of the collision-free spin transport (known as ballistic spin transport). This project will advance our knowledge of spin dynamics in semiconductors, and provide comprehensive information for nanoscale spintronics. The education component of this project is well integrated with the research efforts. A new course on laser principles and techniques will be developed. The cutting edge research will involve graduate and undergraduate students, as well as high-school teachers. Outreach projects concerning what happens at very short time scales as well as projects concerning fundamental processes in materials will also be developed based on the research topics.****TECHNICAL ABSTRACT****This Faculty Early Career Award supports experimental investigations of nanoscale ballistic spin transport in semiconductor bulk, quantum wells and quantum wires. Spin transport is a fundamental process in spintronic devices. So far, most studies have focused on transport on large length scales where the transport is dominated by the drift-diffusion processes. Since the size of electronic devices on integrated circuits has been reduced to 60 nm, which is comparable to or even smaller than the mean free path of electrons, it is necessary to understand and control ballistic spin transport on the nanoscale. In this project, nanoscale spin transport in semiconductors will be studied by using ultrafast laser techniques with a temporal resolution of 70 femtoseconds and a capability of detecting movements as small as 10 picometers. Nanoscale ballistic spin transport will be directly observed and studied by tracking the position of spins in real space and real time. Several key aspects of ballistic spin transport will be studied. The proposed research will provide comprehensive information for nano-spintronics and reveal rich physics involved in ballistic spin transport. The education component of this project is well integrated with the research efforts. A new course on laser principles and techniques will be developed. The cutting edge research will involve graduate and undergraduate students, as well as high-school teachers. Outreach projects will also be developed based on the research topics.
****非技术摘要****除了电荷之外,电子还具有称为“自旋”的量子力学特性。 一种基于电子自旋的未来技术被称为“自旋电子学”。 自旋电子器件预计将比现有的电子器件更强大、更便宜、更轻并且消耗更少的能量。为了开发这种基于自旋的技术,有必要研究半导体中自旋的运动。 该学院早期职业奖支持一个研究半导体中纳米级自旋输运的项目。到目前为止,大多数研究都集中在微米甚至更大长度尺度的自旋输运。为了将自旋电子学与纳米技术相结合,理解和控制半导体中的纳米级自旋输运至关重要。 这种运输将在很短的时间内进行。 该项目将利用新型激光技术解决这一关键问题,该技术能够检测快至 70 飞秒的事件和小至百分之一纳米的自旋运动。砷化镓及其纳米结构将用于研究无碰撞自旋输运(称为弹道自旋输运)的几个关键方面。该项目将增进我们对半导体自旋动力学的了解,并为纳米级自旋电子学提供全面的信息。该项目的教育部分与研究工作很好地结合在一起。将开发一门关于激光原理和技术的新课程。前沿研究将涉及研究生和本科生以及高中教师。 还将根据研究主题开发有关极短时间范围内发生的事情的外展项目以及有关材料基本过程的项目。****技术摘要****该教师早期职业奖支持纳米级弹道的实验研究半导体块体、量子阱和量子线中的自旋输运。自旋输运是自旋电子器件的基本过程。到目前为止,大多数研究都集中在大尺度的输运上,其中输运以漂移扩散过程为主。由于集成电路上电子器件的尺寸已缩小到60纳米,与电子的平均自由程相当甚至更小,因此有必要了解和控制纳米尺度的弹道自旋输运。在该项目中,将使用时间分辨率为 70 飞秒且能够检测小至 10 皮米运动的超快激光技术来研究半导体中的纳米级自旋输运。通过跟踪真实空间和实时自旋的位置,将直接观察和研究纳米级弹道自旋输运。将研究弹道自旋输运的几个关键方面。拟议的研究将为纳米自旋电子学提供全面的信息,并揭示弹道自旋输运中涉及的丰富物理学。该项目的教育部分与研究工作很好地结合在一起。将开发一门关于激光原理和技术的新课程。前沿研究将涉及研究生和本科生以及高中教师。还将根据研究主题制定外展项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Zhao其他文献

5-Acetyl-6,7,8,4′-tetramethylnortangeretin induces apoptosis in multiple myeloma U266 cells
5-乙酰基-6,7,8,4-四甲基去甲橘黄素诱导多发性骨髓瘤 U266 细胞凋亡
  • DOI:
    10.1016/j.fshw.2014.12.003
  • 发表时间:
    2014-09-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Dexian Zhi;Su Liu;L. Lin;Liwen Wang;Jinhan Wang;Jing Ma;Suying Wang;Hui Zhao;Chi;Yafei Wang;Qiang Liu
  • 通讯作者:
    Qiang Liu
Conditional deletion of Hspa5 leads to spermatogenesis failure and male infertility in mice.
Hspa5 的条件性缺失会导致小鼠精子发生失败和雄性不育。
  • DOI:
    10.1016/j.lfs.2022.121319
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Z. Wen;Haixia Zhu;Jing Wang;Bin Wu;Aizhen Zhang;Hui Zhao;Chenyang Song;Shuangyuan Liu;Yin Cheng;Hongxiang Wang;Jianyuan Li;Daqing Sun;Xiaolong Fu;Jiangang Gao;Min Liu
  • 通讯作者:
    Min Liu
Measurement of the Vaporization Enthalpy of Complex Mixtures by Correlation-Gas Chromatography. The Vaporization Enthalpy of RP-1, JP-7, and JP-8 Rocket and Jet Fuels at T = 298.15 K
通过相关气相色谱法测量复杂混合物的汽化焓。
  • DOI:
    10.1021/ef050116m
  • 发表时间:
    2005-07-13
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    J. Chickos;Hui Zhao
  • 通讯作者:
    Hui Zhao
Supplementary Material (ESI) for Chemical Communications
化学通讯补充材料 (ESI)
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuyan Zhang;Zhaopeng Deng;L. Huo;Shu;Hui Zhao;Shan Gao
  • 通讯作者:
    Shan Gao
Developmental expression of peroxiredoxin gene family in early embryonic development of Xenopus tropicalis.
过氧化还原蛋白基因家族在热带爪蟾早期胚胎发育中的发育表达。
  • DOI:
    10.1016/j.gep.2023.119345
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linke Zhong;Tingting Fu;Chengdong Wang;Xufeng Qi;W. Chan;Dongqing Cai;Hui Zhao
  • 通讯作者:
    Hui Zhao

Hui Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Zhao', 18)}}的其他基金

Collaborative Research: Self-regulated non-equilibrium assembly of chiral colloidal clusters via electrokinetic interactions
合作研究:通过动电相互作用实现手性胶体簇的自我调节非平衡组装
  • 批准号:
    2314340
  • 财政年份:
    2023
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Concentration Polarization Induced Electrokinetic Flows around dielectric Surfaces
合作研究:聚光极化引起介电表面周围的动电流
  • 批准号:
    2127852
  • 财政年份:
    2021
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
CAREER: Reinventing Network-on-Chips of GPU-Accelerated Systems
职业:重塑 GPU 加速系统的片上网络
  • 批准号:
    2046186
  • 财政年份:
    2021
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing Grant
REU Site: Interdisciplinary Research Experience on Accelerated Deep Learning through A Hardware-Software Collaborative Approach
REU 网站:通过硬件-软件协作方法加速深度学习的跨学科研究经验
  • 批准号:
    2051062
  • 财政年份:
    2021
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Tangram: Scaling into the Exascale Era with Reconfigurable Aggregated "Virtual Chips"
合作研究:SHF:小型:七巧板:通过可重构聚合“虚拟芯片”扩展到百亿亿次时代
  • 批准号:
    2008911
  • 财政年份:
    2020
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Bioinspired Nanomanufacturing of Graphene-embedded Superhydrophobic Surfaces with Mechanical and Chemical Robustness
具有机械和化学稳定性的石墨烯嵌入超疏水表面的仿生纳米制造
  • 批准号:
    1911719
  • 财政年份:
    2019
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Super-Hydrophobic Surface Enabled Microfluidic Energy Conversion
超疏水表面实现微流体能量转换
  • 批准号:
    1509866
  • 财政年份:
    2015
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Novel transport phenomena in two-dimensional crystals beyond graphene
石墨烯以外的二维晶体中的新颖输运现象
  • 批准号:
    1505852
  • 财政年份:
    2015
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于亚纳米级高速摩擦抛光下的金刚石亚表面跨尺度损伤演变与控制机制
  • 批准号:
    52302036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单粒子效应对基于纳米级异构多核SoC的卷积神经网络系统影响机理研究
  • 批准号:
    12305303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米级相变薄膜的反常结晶动力学行为及其存储器件特性研究
  • 批准号:
    62374096
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
肿瘤细胞纳米级凋亡小体诱导获得性胸腺耐受效应的作用与机制研究
  • 批准号:
    32300576
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于酶-纳米级联循环反应的微创左旋多巴生物传感器的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:

相似海外基金

CAREER: Engineering Chiral Nanoscale Interactions to Enhance Nanomaterial Transport and Uptake in Tissue and at Biointerfaces
职业:工程手性纳米级相互作用以增强组织和生物界面中纳米材料的运输和吸收
  • 批准号:
    2337387
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing Grant
CAREER: Nanoscale Resolution of Near-Interface Crystallization in Multicomponent Semicrystalline Polymeric Materials
职业:多组分半晶聚合物材料中近界面结晶的纳米级分辨率
  • 批准号:
    2338613
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and controlling the sintering of metal powders with nanoscale additives
职业:了解和控制纳米级添加剂金属粉末的烧结
  • 批准号:
    2340688
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing Grant
Single-atom quantum phenomena in nanoscale semiconductor devices
纳米级半导体器件中的单原子量子现象
  • 批准号:
    EP/V048333/2
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Research Grant
Quantum microscopy facility for ultrasensitive nanoscale magnetic imaging
用于超灵敏纳米级磁成像的量子显微镜设备
  • 批准号:
    LE240100092
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了