CAREER: Locomotion of Small Organisms in Complex Fluids

职业:复杂流体中小生物的运动

基本信息

  • 批准号:
    0954084
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

0954084ArratiaAn understanding of the locomotion of animals is of great practical and scientific importance. Despite much effort, many questions remain unanswered regarding the effects of fluid rheology (e.g. viscoelasticity) on the motility of small living organisms. Answers to these questions can lead to potentially useful applications spanning many fields such as engineering, robotics, physics, and biology. For example, motility investigations of model living organisms can provide a powerful tool for the analysis of new and existing mutations involved in Muscular Dystrophy (MD), a disease that affects millions of people worldwide but, to date, has no cure. This project aims to (1) advance our understanding of the forces governing nematode motility in complex media including viscoelastic fluids and to (2) measure non-invasively the biomechanical and material properties of healthy and mutant nematodes carrying MD. The organism of choice is the nematode (worm) Caenorhabditis (C.) elegans, which is a promising candidate for motility investigations at low Reynolds numbers in complex fluids due to their small size (L~ 1 mm) and adaptability to various fluidic environments. C. elegans is also a model biological system used to explore potential causes and treatments for human diseases because their genome has been completely sequenced. In addition, the motility of C. elegans is controlled by 95 muscle cells that are highly similar in both anatomy and molecular makeup to vertebrate skeletal muscle. These muscle cells express many genes associated with human muscular dystrophies, such as genes homologous to Dystrophin and (Duchennes MD) and Dysferlin (Limb Girdle MD). This research is motivated by two primary objectives. The first is devoted to the fundamental investigation of the effects of fluids that exhibit both solid and fluid-like behavior such as viscoelastic fluids on the motility of C. elegans in the low Reynolds numbers regime. Many relevant living organisms move in viscoelastic fluids such as mucus, and bio-molecular fluids, and suspensions. However, little is known about the effects of elastic stresses on the motility behavior of living organisms. Important questions include: (i) how do fluid elastic stresses affect the motility kinematic and swimming behavior of nematodes at low Reynolds numbers? (ii) Do nematodes swim faster or slower in the presence of elastic stresses and/or shear rate dependent viscosity? (iii) Do nematodes adjust or adapt to their fluidic environment by changing their swimming gaits such as frequency and amplitude? The second involves applying this knowledge to estimate the biomechanical and material properties of swimming nematodes. By estimating such properties, the PI will be able to phenotype wild-type and mutant nematodes carrying MD, which ultimately will contribute to developing quantitative, reliable diagnostic tools for MD. Intellectual Merit:The research is based on the PI's previous efforts in understanding complex fluid flow phenomena, and will make new valuable contributions that are both fundamental and applied. From a fundamental perspective, the PI will (1) use high spatial and temporal resolution experiments to characterize the flow behavior and nematode motion in complex fluidic environments. Such a quantitative, engineering based analysis of muscle function provides a new paradigm for the study of muscle physiology and other diseases; (2) develop theoretical and numerical models to characterize the biomechanics of nematodes in order to non invasively obtain estimates of their material properties; and (3) investigate the effects of fluid rheological properties on the motility of nematodes. From an applied perspective, the PI will develop diagnostic tools capable of quantitatively investigating nematodes carrying genetic mutations including those associated with Muscular Dystrophy. Since C. elegans offer many advantages for defining the molecular basis of environmental stress signaling, this research program will contribute to a better understanding of motility based diseases such as Muscular Dystrophy. Broader Impact:An integrated research and educational program lies at the rich interface between (fluid) mechanics and biology. It includes: (1) recruiting undergraduate students for summer research internships from Historically Black Colleges and Universities that do not possess an engineering graduate program. One of the main objectives is to increase the participation of historically under represented minorities such as African Americans, Native Americans, and Hispanics in research; (2) training graduate students by offering new graduate level courses in complex and bio-fluids as well as research opportunities; (3) involving K-12 teachers in the research and educational program. Finally, the results of this research and educational program will be broadly disseminated and will have potentially important benefits to society. In particular, the results will increase understanding of new fluid mechanics phenomena and certain types of diseases.
0954084Arratia 了解动物的运动具有重要的实践和科学意义。尽管付出了很多努力,但关于流体流变学(例如粘弹性)对小型生物体运动的影响的许多问题仍未得到解答。这些问题的答案可能会带来跨越工程、机器人、物理学和生物学等许多领域的潜在有用应用。例如,模型生物体的运动性研究可以为分析肌营养不良症 (MD) 所涉及的新的和现有的突变提供强大的工具,这种疾病影响着全世界数百万人,但迄今为止尚无治愈方法。该项目旨在 (1) 增进我们对复杂介质(包括粘弹性流体)中线虫运动力的理解,以及 (2) 非侵入性测量携带 MD 的健康和突变线虫的生物力学和材料特性。选择的生物体是线虫(蠕虫)秀丽隐杆线虫(C.),由于其体积小(L〜1毫米)和对各种流体环境的适应性,它是复杂流体中低雷诺数运动研究的有前途的候选者。线虫也是一种模型生物系统,用于探索人类疾病的潜在原因和治疗方法,因为它们的基因组已被完全测序。此外,线虫的运动由 95 个肌肉细胞控制,这些细胞在解剖结构和分子组成上与脊椎动物骨骼肌高度相似。这些肌肉细胞表达许多与人类肌营养不良症相关的基因,例如与肌营养不良蛋白 (Duchennes MD) 和 Dysferlin (Limb Girdle MD) 同源的基因。这项研究有两个主要目标。第一个致力于对表现出固体和类流体行为的流体(例如粘弹性流体)对低雷诺数状态下线虫运动的影响进行基础研究。许多相关的生物体在粘弹性流体中移动,例如粘液、生物分子流体和悬浮液。然而,人们对弹性应力对生物体运动行为的影响知之甚少。重要的问题包括:(i)流体弹性应力如何影响低雷诺数下线虫的运动运动学和游泳行为? (ii) 在存在弹性应力和/或剪切速率依赖性粘度的情况下,线虫游得更快还是更慢? (iii)线虫是否通过改变游泳步态(例如频率和幅度)来调整或适应其流体环境?第二个涉及应用这些知识来估计游泳线虫的生物力学和材料特性。通过估计这些特性,PI 将能够对携带 MD 的野生型和突变线虫进行表型分析,这最终将有助于开发定量、可靠的 MD 诊断工具。智力价值:该研究基于 PI 之前在理解复杂流体流动现象方面所做的努力,并将在基础和应用方面做出新的有价值的贡献。从基本角度来看,PI 将 (1) 使用高空间和时间分辨率实验来表征复杂流体环境中的流动行为和线虫运动。这种基于工程的定量肌肉功能分析为肌肉生理学和其他疾病的研究提供了新的范例。 (2) 开发理论和数值模型来表征线虫的生物力学,以便非侵入性地获得对其材料特性的估计; (3)研究流体流变特性对线虫运动的影响。从应用的角度来看,PI 将开发能够定量研究携带基因突变(包括与肌营养不良症相关的线虫)的诊断工具。由于秀丽隐杆线虫在定义环境应激信号的分子基础方面具有许多优势,因此该研究计划将有助于更好地了解基于运动的疾病,例如肌肉营养不良症。更广泛的影响:综合研究和教育计划位于(流体)力学和生物学之间的丰富界面。它包括:(1)从不具备工程研究生课程的传统黑人学院和大学招募本科生进行暑期研究实习。主要目标之一是增加历史上代表性不足的少数群体(如非裔美国人、美洲原住民和西班牙裔)对研究的参与; (2) 通过提供复杂和生物流体方面的新研究生水平课程以及研究机会来培养研究生; (3) 让 K-12 教师参与研究和教育计划。最后,这项研究和教育计划的结果将得到广泛传播,并将为社会带来潜在的重要利益。特别是,这些结果将增加对新流体力学现象和某些类型疾病的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paulo Arratia其他文献

Understanding pharmaceutical flows
了解药品流程
  • DOI:
    10.1016/j.apcatb.2004.09.010
  • 发表时间:
    2002-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Kukura;Paulo Arratia;E. S. Szalai;K. Bittorf;F. Muzzio
  • 通讯作者:
    F. Muzzio
Single cell phototransfection of mRNAs encoding SARS-CoV2 spike and nucleocapsid into human astrocytes results in RNA dependent translation interference
将编码 SARS-CoV2 刺突和核衣壳的 mRNA 单细胞光转染到人星形胶质细胞中,导致 RNA 依赖性翻译干扰
  • DOI:
    10.3389/fddev.2024.1359700
  • 发表时间:
    2024-03-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hyun;Quentin Brosseau;Julia Radzio;Jinhui Wang;Hiromi Muramatsu;Da Kuang;M. S. Grady;H. I. Chen;John A. Wolf;A. V. Ulyanova;Tamas Bartfai;Junhyong Kim;Norbert Pardi;J. Sul;Paulo Arratia;James Eberwine;Kuo;Po;Grady MS Kuang D;HI Chen
  • 通讯作者:
    HI Chen

Paulo Arratia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paulo Arratia', 18)}}的其他基金

MRI: Acquisition of a Confocal Microscope Rheometer for Structural Characterization of Complex Fluids & Soft Materials Under Shear
MRI:获取共焦显微镜流变仪用于复杂流体的结构表征
  • 批准号:
    1920156
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Transport and Dynamics of Swimming Microorganisms in Time-Periodic Flows
时间周期流中游动微生物的传输和动力学
  • 批准号:
    1709763
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Investigating the Unsteady Rheology and Evolving Microstructure of Suspensions of Swimming Microorganism
研究游动微生物悬浮液的非稳态流变学和演变的微观结构
  • 批准号:
    1437482
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Viscoelastic Fluids in Parallel Shear Flows at low re: Instabilities, Bifurcations & Single Molecule Experiments
低 re 下平行剪切流中的粘弹性流体:不稳定性、分叉
  • 批准号:
    1336171
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RUI: Particle Dynamics: Swimming Cells and Sheared Particulate Materials
RUI:粒子动力学:游泳细胞和剪切颗粒材料
  • 批准号:
    1104705
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
The Effects of Viscoelasticity on Filament Thinning & Drop Breakup in Microfluidic Devices: Single Molecule Experiments
粘弹性对长丝细化的影响
  • 批准号:
    0932449
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

代谢产物丁酸介导的PKM2乳酸化修饰调控小胶质细胞极化参与有氧运动发挥脑梗死后神经保护作用的机制研究
  • 批准号:
    82302861
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CVNS持续激活小胶质细胞促进脑出血慢性期患者运动神经突触重构的作用与机制研究
  • 批准号:
    82371466
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
有氧运动通过Irisin激活αKG-TET2促进小胶质细胞抗炎效应改善老年术后认知功能障碍的机制研究
  • 批准号:
    82372579
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
运动激发的小分子多肽ApoA1 tide抑制高血压心肌重构的作用及分子机制
  • 批准号:
    82370430
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
CD47调控小胶质细胞吞噬髓鞘参与运动记忆衰退的机制研究
  • 批准号:
    32300850
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing a novel treatment of cocaine use disorder using an IND dual inhibitor of Cav3 channel and soluble epoxide hydrolase
使用 Cav3 通道和可溶性环氧化物水解酶的 IND 双重抑制剂开发可卡因使用障碍的新型治疗方法
  • 批准号:
    10786151
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Oxytocin Induces Retrograde Metaplasticity to Attenuate CocainePreference Behavior
催产素诱导逆行可塑性以减弱可卡因偏好行为
  • 批准号:
    10810613
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Finding the way: Sensory adaptation during bacterial mechanotransduction
寻找方法:细菌机械传导过程中的感觉适应
  • 批准号:
    10744926
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Discovery and development of OGG1 activators as precision drugs for modification of Alzheimer's disease progression.
发现和开发 OGG1 激活剂作为改变阿尔茨海默病进展的精准药物。
  • 批准号:
    10759620
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Investigational WNT-pathway modulators for the treatment and prevention of drug-resistant seizures
用于治疗和预防耐药性癫痫发作的研究性 WNT 通路调节剂
  • 批准号:
    10725450
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了