SOLAR: Novel Nanomaterials and Mathematical Analysis for Ultra-High Efficiency Photovoltaic Systems: A New Paradigm in Solar Cells
太阳能:超高效光伏系统的新型纳米材料和数学分析:太阳能电池的新范例
基本信息
- 批准号:0934520
- 负责人:
- 金额:$ 171.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:Increasing solar cell efficiency and affordability are critical objectives for achieving energy sustainability. The use of semiconducting nanomaterials paired with organic semiconducting polymers offers promise here, with the possibility to realize cost effective high performance heterojunction devices. Current approaches however are limited by small exciton diffusion lengths and the sub-optimal transport characteristics of the percolated nanomaterial aggregates found in today?s state of the art devices. Overcoming these limitations can lead to significant breakthroughs in solar cell performance. This proposal aims to address the above mentioned limitations. The proposed work is a 3-year project that focuses on the synthesis of novel nanomaterials with long excitonic lifetimes such as GaN single walled nanotubes, and the use of well aligned self-assembled mesophases as templates for the directed assembly of these novel nanomaterials. Assembly of anisotropic nanomaterials in nm-spaced arrays will provide significantly increased photo-induced charge transfer by providing electron-hole dissociation surfaces of high, controllable periodicity, separated by length scales that are smaller than the exciton diffusion length itself. . Dissociation at these aligned surfaces provides direct electron conduction pathways to the external electrodes of the device. The organization of this high surface area for exciton dissociation will be accomplished using methods that are scalable and do not require advanced lithography. Harmonic analysis will be leveraged to considerably enhance both ab initio calculations of the electro-optical properties of novel nanomaterials and design of experiments in the multi-parameter space that correlates photo-voltaic performance with material composition and device assembly.NON TECHNICAL SUMMARY:The proposed work will provide the design basis for clean and sustainable energy generation. Successfully executed, it will result in new materials and processes enabling higher efficiency and more cost-effective solar cells. This project has a broad technical impact as the materials and methods developed during the course of the basic research can be applied in other areas such as thermoelectric energy harvesting, light emitting diodes, photodetectors and advanced chemical separations. A number of educational and outreach activities have been integrated into the proposed work. These include a research seminar program run in partnership with three undergraduate focused institutions, recruitment of students, especially from underrepresented groups, for summer research projects and the creation of a new module on experimental design for the introductory undergraduate Chemical Engineering course at Yale University. The impacts of the proposed research overall are: (1) Development of new science that will drive transformative advances in solar technology (2) Development of materials and methods with a broad range of technological relevance beyond photovoltaics (3) Highly interdisciplinary training of graduate students and researchers cutting across chemistry, materials science and mathematics (4) Involvement and mentoring of undergraduate students in research (5) Recruitment of underrepresented groups to science.
技术摘要:提高太阳能电池效率和可承受性是实现能源可持续性的关键目标。半导体纳米材料与有机半导体聚合物的结合使用提供了希望,有可能实现具有成本效益的高性能异质结器件。然而,当前的方法受到小激子扩散长度和当今最先进设备中渗透纳米材料聚集体的次优传输特性的限制。克服这些限制可以导致太阳能电池性能的重大突破。该提案旨在解决上述限制。拟议的工作是一个为期3年的项目,重点是合成具有长激子寿命的新型纳米材料,例如GaN单壁纳米管,以及使用良好排列的自组装中间相作为这些新型纳米材料的定向组装的模板。纳米间隔阵列中各向异性纳米材料的组装将通过提供高可控周期性的电子空穴离解表面(由小于激子扩散长度本身的长度尺度分隔)来显着增加光致电荷转移。 。这些对齐表面处的解离提供了到器件外部电极的直接电子传导路径。 这种用于激子解离的高表面积的组织将使用可扩展且不需要先进光刻的方法来完成。将利用谐波分析来显着增强新型纳米材料电光特性的从头计算以及将光伏性能与材料成分和器件组装相关联的多参数空间中的实验设计。非技术摘要:拟议的这项工作将为清洁和可持续能源发电提供设计基础。如果成功执行,它将产生新的材料和工艺,从而实现更高效率和更具成本效益的太阳能电池。该项目具有广泛的技术影响,因为在基础研究过程中开发的材料和方法可以应用于其他领域,如热电能量收集、发光二极管、光电探测器和先进的化学分离。许多教育和外展活动已纳入拟议的工作中。其中包括与三个本科重点机构合作开展的研究研讨会计划、招募学生(尤其是来自代表性不足的群体)进行夏季研究项目,以及为耶鲁大学本科化学工程入门课程创建一个新的实验设计模块。拟议研究的总体影响是:(1)新科学的发展将推动太阳能技术的变革性进步(2)开发具有光伏以外广泛技术相关性的材料和方法(3)对研究生进行高度跨学科的培训化学、材料科学和数学领域的研究人员 (4) 本科生参与和指导研究 (5) 招募代表性不足的群体进入科学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lisa Pfefferle其他文献
Sooting tendencies of diesel fuel component mixtures follow a linear mixing rule
柴油燃料成分混合物的烟灰倾向遵循线性混合规则
- DOI:
10.26434/chemrxiv-2022-xrgnf - 发表时间:
2022-01-11 - 期刊:
- 影响因子:5
- 作者:
Zhanhong Xiang;Karnsiree Chen;C. McEnally;Lisa Pfefferle - 通讯作者:
Lisa Pfefferle
High performance alkyl dialkoxyalkanoate bioderived transportation fuels accessed using a mild and scalable synthetic protocol
- DOI:
10.1039/d3se00804e - 发表时间:
2024-02 - 期刊:
- 影响因子:5.6
- 作者:
Nicholas R. Myllenbeck;Eric Monroe;Mysha Sarwar;Teresa Alleman;Cameron Hays;Jon Luecke;Junqing Zhu;Charles McEnally;Lisa Pfefferle;Anthe George;Ryan W. Davis - 通讯作者:
Ryan W. Davis
Application of Alkoxyalkanoates (AOAs) as Renewable Diesel Blendstocks from Chemical Coupling of High-Yield Fermentation Products
烷氧基链烷酸酯 (AOA) 作为高产发酵产物化学偶联的可再生柴油调合原料的应用
- DOI:
10.1021/acs.energyfuels.2c02606 - 发表时间:
2022-12-08 - 期刊:
- 影响因子:0
- 作者:
Eric A. Monroe;Joseph S. Carlson;Rakia Dhaoui;M. Sarwar;P. Benavides;Junqing Zhu;C. McEnally;Lisa Pfefferle;A. George;Nicholas Sizemore;Ryan W. Davis - 通讯作者:
Ryan W. Davis
Emerging Dual-Functional 2D transition metal oxides for carbon capture and Utilization: A review
用于碳捕获和利用的新兴双功能二维过渡金属氧化物:综述
- DOI:
10.1016/j.fuel.2022.124706 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:7.4
- 作者:
Liuqingqing Yang;J. Heinlein;C. Hua;Ruixia Gao;Shu Hu;Lisa Pfefferle;Yulian He - 通讯作者:
Yulian He
Effect of Co-MCM-41 Conversion to Cobalt Silicate for Catalytic Growth of Single Wall Carbon Nanotubes
Co-MCM-41 转化为硅酸钴对单壁碳纳米管催化生长的影响
- DOI:
10.1021/jp0466385 - 发表时间:
2004-12-04 - 期刊:
- 影响因子:3.3
- 作者:
Sangyun Lim;D. Ciuparu;Yuan Chen;Lisa Pfefferle;G. L. Haller - 通讯作者:
G. L. Haller
Lisa Pfefferle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lisa Pfefferle', 18)}}的其他基金
NSF/DOE Partnership on Advanced Combustion Engines: Sooting Behavior of Conventional and Renewable Diesel-Fuel Compounds and Mixtures
NSF/DOE 先进内燃机合作伙伴关系:传统和可再生柴油燃料化合物和混合物的烟灰行为
- 批准号:
1258654 - 财政年份:2013
- 资助金额:
$ 171.64万 - 项目类别:
Continuing Grant
Collaborative Research: Scalable Separation of Single Walled Carbon Nanotubes
合作研究:单壁碳纳米管的可扩展分离
- 批准号:
1264698 - 财政年份:2013
- 资助金额:
$ 171.64万 - 项目类别:
Continuing Grant
Computational and Experimental Study of Oxygenated Hydrocarbon Fuel Chemistry in Non-premixed Flames
非预混火焰中含氧烃燃料化学的计算和实验研究
- 批准号:
1133211 - 财政年份:2011
- 资助金额:
$ 171.64万 - 项目类别:
Standard Grant
Collaborative Research: Diameter and Chirality Control and Regrowth of Single-Walled Carbon Nanotubes
合作研究:单壁碳纳米管的直径和手性控制以及再生
- 批准号:
0828771 - 财政年份:2008
- 资助金额:
$ 171.64万 - 项目类别:
Standard Grant
Fuel Decomposition and Aromatic Formation Pathways for the Hydrocarbons Contained in Liquid Combustion Fuels
液体燃烧燃料中所含碳氢化合物的燃料分解和芳香形成途径
- 批准号:
0756303 - 财政年份:2008
- 资助金额:
$ 171.64万 - 项目类别:
Continuing Grant
Fuel Decomposition and Aromatic Formation Pathways for the Hydrocarbons Contained in Liquid Combustion Fuels
液体燃烧燃料中所含碳氢化合物的燃料分解和芳香形成途径
- 批准号:
0457452 - 财政年份:2005
- 资助金额:
$ 171.64万 - 项目类别:
Continuing Grant
SGER: Templated Synthesis of Boron Nanostructures
SGER:硼纳米结构的模板合成
- 批准号:
0335218 - 财政年份:2003
- 资助金额:
$ 171.64万 - 项目类别:
Standard Grant
GC-MS for Catalysis, Combustion and Nanotechnology Research and Student Training
用于催化、燃烧和纳米技术研究和学生培训的 GC-MS
- 批准号:
0214211 - 财政年份:2002
- 资助金额:
$ 171.64万 - 项目类别:
Standard Grant
Formation of Toxic Combustion Byproducts and Soot
有毒燃烧副产品和烟灰的形成
- 批准号:
0121765 - 财政年份:2002
- 资助金额:
$ 171.64万 - 项目类别:
Continuing Grant
Aromatic Compound and Soot Precursor Formation in Diffusion Flames
扩散火焰中芳香族化合物和烟灰前体的形成
- 批准号:
9714222 - 财政年份:1998
- 资助金额:
$ 171.64万 - 项目类别:
Continuing Grant
相似国自然基金
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 171.64万 - 项目类别:
Modeling the mucosal glycopeptide mesh for improved disease understanding and mucin-inspired biomaterial design
对粘膜糖肽网进行建模,以提高对疾病的理解和粘蛋白启发的生物材料设计
- 批准号:
10715230 - 财政年份:2023
- 资助金额:
$ 171.64万 - 项目类别:
Using trained immunity-inhibiting nanobiologics to achieve tolerance of heart allografts in non-human primates
使用经过训练的免疫抑制纳米生物制剂来实现非人类灵长类动物同种异体心脏移植的耐受性
- 批准号:
10642598 - 财政年份:2023
- 资助金额:
$ 171.64万 - 项目类别:
Homogenized, engineered extracellular vesicles for intracranial targeting
用于颅内靶向的均质化、工程化细胞外囊泡
- 批准号:
10659682 - 财政年份:2023
- 资助金额:
$ 171.64万 - 项目类别:
Mechanistic insights on structure, topology and radiation effects on RNA nanomedicines
RNA纳米药物的结构、拓扑和辐射效应的机理见解
- 批准号:
10587705 - 财政年份:2023
- 资助金额:
$ 171.64万 - 项目类别: