Collaborative Research: Fluid Dynamics Foundations of Cell Printing
合作研究:细胞打印的流体动力学基础
基本信息
- 批准号:0936238
- 负责人:
- 金额:$ 10.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0936235/0936238 Qiao/Xu Structural cell printing (SCP), or printing three dimensional structures of cells held in a tissue matrix, has long been a fascinating idea. Drawing on the micrometer resolution of droplet based printing techniques, SCP holds the promise of achieving cell deposition resolution comparable to the size of a single cell. Achieving such a resolution in vitro will resolve one of the most fundamental challenges in tissue engineering and enable revolutionary breakthroughs in numerous areas. Despite significant concerns, in particular whether cells can survive the harsh printing process, the feasibility of SCP has been demonstrated recently. However, despite the explosive growth of research in SCP, such a technique is still in its infancy and many critical issues remain unresolved. Most importantly, the envisioned cell deposition resolution has yet to be achieved and the cell viability needs to be improved. Addressing these issues necessitates a thorough understanding of the SCP process. The objective of this project is to investigate a key step in the ink jet based SCP process, i.e., printing cell laden droplets onto a thin liquid film to form two dimensional cell patterns, using an integrated experimental and modeling approach. Two unit operations of this critical step will be studied, namely, the printing of a dot featuring a single cell (cell dot) and the printing of a line of cells (cell line). The study of cell dot printing will focus on elucidating the dynamics of a cell laden droplet impacting a liquid film with an emphasis on the spreading and penetration behavior of the droplet and the stress evolution of the cell, which govern the cell deposition resolution and cell viability. The study of cell line printing will focus on delineating the interactions between sequentially printed cell-laden droplets and how these interactions affect the droplet liquid film impact, the stress of cells inside the droplets, and ultimately the cell deposition resolution and cell viability.Intellectual Merit: The proposed research is a pioneer study of the fluid dynamics involved in ink jet based SCP techniques. The insights gained here will provide a knowledge base for the rational design of SCP process to achieve optimal cell deposition resolution and cell viability, and thus will help remove critical barriers for this new technique to reach its fullest potential. By delineating the droplet and cell dynamics unique to the SCP process, e.g., the dynamics of cells in exceedingly strong shear flows at microsecond time scale, this research will also enrich the fluid dynamics theories of droplet and cell dynamics. The proposed research will benefit from the synergistic collaboration between two PIs with complementary expertise in cell printing and mutliphysics simulations, and is supported by state-of-the-art experimental and computing facilities.Broader Impacts: The project will be tied closely to the undergraduate graduate education at the PIs home institutions. Students participating in this interdisciplinary project will be exposed to diverse fields such as fluid dynamics, cell mechanics and bioengineering. Five undergraduate students will be involved in the research each year. Various resources, e.g., the minority recruitment programs at the PIs institutions, will be utilized to recruit students from underrepresented groups to participate in this project. Research results will be developed into movies for use in K-12 outreach activities and for submission to the gallery of fluid motion/image hosted by Efluid.com. To help disseminate research to lay audiences and to help them appreciate the significance of fluid dynamics research in developing useful technologies, we will develop a website named The Nerdy Side of Cell Printing. This website will explain the fluid dynamics involved in structural cell printing by using experiment/computer generated images and movies that are easily understandable to the general public. The website will be advertised to the target audience via formal and informal channels.
0936235/0936238 QIAO/XU结构细胞打印(SCP)或在组织基质中保存的细胞的三维结构,长期以来一直是一个有趣的想法。 SCP借鉴了基于液滴的打印技术的千分尺分辨率,其承诺可以实现与单个单元格大小相当的细胞沉积分辨率。在体外实现这样的解决方案将解决组织工程中最根本的挑战之一,并在许多领域实现革命性的突破。尽管引起了重大关注,特别是细胞是否可以在严酷的印刷过程中生存,但最近已经证明了SCP的可行性。但是,尽管SCP研究的爆炸性增长,但这种技术仍处于起步阶段,许多关键问题仍未解决。最重要的是,设想的细胞沉积分辨率尚未实现,需要提高细胞活力。解决这些问题需要对SCP过程有透彻的了解。 该项目的目的是使用集成的实验和建模方法研究基于墨水的SCP工艺中的关键步骤,即将LADEN液滴打印到薄液膜上,形成二维细胞图案。将研究此关键步骤的两个单位操作,即,以单个单元格(单元点)和一系列单元(单元线)的打印(单元线)(单元线)的打印。细胞点打印的研究将集中于阐明载有液滴的细胞液滴的动力学,重点是液滴的扩散和穿透行为以及细胞的应力演化,该细胞的应力演化控制了细胞沉积分辨率和细胞活力。对细胞系打印的研究将集中在划定依次印刷的载有细胞的液滴之间的相互作用,以及这些相互作用如何影响液滴液体膜的影响,液滴内部的细胞的压力以及最终的细胞沉积分辨率和细胞可行性。智能上的优点:提出的研究研究是对墨水式SCP中的液化动力学研究的研究。这里获得的见解将为SCP过程的合理设计提供知识库,以实现最佳的细胞沉积分辨率和细胞活力,因此将有助于消除这种新技术的关键障碍,以达到其最大的潜力。通过描述SCP过程所特有的液滴和细胞动力学,例如,在微秒时尺度上的细胞动力学非常强,这项研究还将丰富液滴和细胞动力学的流体动力学理论。拟议的研究将受益于两个PI之间的协同合作,并在细胞印刷和Mutliphysics模拟方面具有互补的专业知识,并得到最先进的实验和计算设施的支持。BOADER的影响:该项目将与PIS Home Institutions的本科生教育紧密联系。参加这个跨学科项目的学生将暴露于流体动力学,细胞力学和生物工程等各种领域。每年将参与五名本科生。 PIS机构的各种资源,例如,PIS机构的少数民族招聘计划将用于招募来自代表性不足的团体的学生参加该项目。研究结果将被发展为电影,以用于K-12外展活动,并提交给Efluid.com托管的流体运动/图像画廊。为了帮助传播研究以介绍受众,并帮助他们欣赏流体动力学研究在开发有用技术中的重要性,我们将开发一个名为“细胞打印的书呆子一面”的网站。该网站将使用实验/计算机生成的图像和电影来解释结构细胞打印中涉及的流体动态,这些图像和电影对公众很容易理解。该网站将通过正式和非正式渠道向目标受众广告。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Xu其他文献
Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP
镁将饥饿介导的抗生素持久性与 ATP 联系起来
- DOI:
10.1128/msphere.00862-19 - 发表时间:
2020-01 - 期刊:
- 影响因子:4.8
- 作者:
Tao Xu;Xuyang Wang;Lu Meng;Mengqi Zhu;Jing Wu;Yuanyuan Xu;Ying Zhang;Wenhong Zhang - 通讯作者:
Wenhong Zhang
Effects of urban forms on CO2 emissions in China from a multi-perspective analysis
多视角分析中国城市形态对CO2排放的影响
- DOI:
10.1016/j.jenvman.2020.110300 - 发表时间:
2020 - 期刊:
- 影响因子:8.7
- 作者:
Kaifang Shi;Tao Xu;Yuanqing Li;Zuoqi Chen;Wenkang Gong;Jianping Wu;Bailang Yu - 通讯作者:
Bailang Yu
Inconsistence between number and function of autoreactive T cells in the course of experimental autoimmune encephalomyelitis
实验性自身免疫性脑脊髓炎病程中自身反应性T细胞数量与功能的不一致
- DOI:
10.1080/08820139.2017.1367008 - 发表时间:
2018-01 - 期刊:
- 影响因子:2.8
- 作者:
Xin Wan;Weiya Pei;Yiming Zhang;Lei Zhang;Khawar Ali Shahzad;Tao Xu;Chuanlai Shen - 通讯作者:
Chuanlai Shen
Golgi-specific DHHC type zinc finger protein is decreased in neurons of intractable epilepsy patients and pentylenetetrazole-kindled rats
顽固性癫痫患者和戊四唑点燃大鼠神经元中高尔基体特异性DHHC型锌指蛋白减少
- DOI:
10.1097/wnr.0000000000001088 - 发表时间:
2018-09 - 期刊:
- 影响因子:1.7
- 作者:
Teng Wang;Ying Liu;Xi Liu;Xin Wei;Xueying Ding;Lijuan Mo;Hui Wang;Wen Zhou;Tao Xu;Fen Deng;Lifen Chen - 通讯作者:
Lifen Chen
Research on Optimization of SDO with Cache Mechanism
具有缓存机制的SDO优化研究
- DOI:
10.1109/itcs.2010.140 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Chunxia Zhang;Wenpu Huang;Tao Xu;Xudong Li - 通讯作者:
Xudong Li
Tao Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Xu', 18)}}的其他基金
Fundamental Study of Dopants Effect for Stable Hybrid Perovskite Materials
稳定杂化钙钛矿材料的掺杂效应的基础研究
- 批准号:
1806152 - 财政年份:2018
- 资助金额:
$ 10.03万 - 项目类别:
Standard Grant
CAREER: Advanced Photochemical Paradigms for Enhanced Photovoltaics and Photocatalysis
职业:增强光伏和光催化的先进光化学范式
- 批准号:
1150617 - 财政年份:2012
- 资助金额:
$ 10.03万 - 项目类别:
Standard Grant
相似国自然基金
基于维吾尔医学“体液学说”研究复方木尼孜其颗粒通过纠正B细胞—Th17细胞间失控的“交叉对话”改善SLE的作用机制
- 批准号:82360858
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
CD147通过Caveolin-1介导内皮细胞损伤参与异种肝移植急性体液性排斥反应的机制研究
- 批准号:82302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同SARS-CoV-2变种感染中体液免疫的动态分析和应答机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
玉屏风散调节PI3K/AKT/mTOR信号通路校正Tfh细胞功能增强体液免疫应答治疗小儿反复呼吸道感染的机制研究
- 批准号:82305313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磷酸盐流体液-液相分离作用实验研究:对前生命化学“磷酸盐问题”的启示
- 批准号:42303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
- 批准号:
2309728 - 财政年份:2023
- 资助金额:
$ 10.03万 - 项目类别:
Standard Grant
Collaborative Research: Fluid infiltration of the continental crust during Laramide flat-slab subduction: a unique tectonic setting
合作研究:拉拉米德平板俯冲期间大陆地壳的流体渗透:独特的构造环境
- 批准号:
2318412 - 财政年份:2023
- 资助金额:
$ 10.03万 - 项目类别:
Standard Grant
Collaborative Research: Quantifying the thermal effects of fluid circulation in oceanic crust on temperatures in the southern Mexico subduction zone
合作研究:量化洋壳流体循环对墨西哥南部俯冲带温度的热效应
- 批准号:
2234705 - 财政年份:2023
- 资助金额:
$ 10.03万 - 项目类别:
Continuing Grant
Collaborative Research: Quantifying the thermal effects of fluid circulation in oceanic crust on temperatures in the southern Mexico subduction zone
合作研究:量化洋壳流体循环对墨西哥南部俯冲带温度的热效应
- 批准号:
2234706 - 财政年份:2023
- 资助金额:
$ 10.03万 - 项目类别:
Continuing Grant
Collaborative Research: Shock formation, shock development, and the propagation of singularities in fluid dynamics
合作研究:激波形成、激波发展以及流体动力学中奇点的传播
- 批准号:
2307680 - 财政年份:2023
- 资助金额:
$ 10.03万 - 项目类别:
Continuing Grant