AF: Small: Algorithmic and Game-Theoretic Issues in Bargaining and Markets

AF:小:讨价还价和市场中的算法和博弈论问题

基本信息

  • 批准号:
    0914732
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

The theories of bargaining and markets, key theories within game theory and mathematical economics, suffer from a serious shortcoming -- other than a few isolated results, they are essentially non-algorithmic. With the advent of the Internet, totally new and highly successful markets have been defined and launched by Internet companies such as Google, Yahoo!, Amazon, MSN and Ebay, and bargaining has emerged as a mechanism of choice in some Internet transactions, such as those made by priceline.com and iOffer.com. Motivated by these developments, much work has been done in the last decade on developing algorithms for markets and bargaining.This project will extend this work along several exciting directions: attacking open problems remaining in the efficient computation of market equilibria such as Fisher's model with piecewise-linear, concave utilities; extending bargaining algorithms to more general utility functions, such as piecewise-linear, concave utilities; developing an algorithm for the Adwords problem that achieves 1 - o(1) expected competitive ratio in the stochastic setting, and at the same time, a 1 - 1/e ratio in the worst case; developing models of bargaining that incorporate constraints such as timing or incentive compatibility, thus making them more suitable for use on the Internet; developing further our understanding of game-theoretic properties of bargaining and markets; and developing further the primal-dual paradigm for the combinatorial solution of nonlinear convex programs, in particular, in the setting of approximation algorithms.This project will increase our understanding of the interactions and complex interdependencies of information systems, markets and social systems. It will enable and support efficient massive distributed systems. This project will provide algorithms for and insights into the computational aspects of markets and transactions on the Internet, thereby helping make their operation more efficient. Hence, this project is expected to contribute advances in science and engineering, as well as to promote economic prosperity.
讨价还价和市场理论是博弈论和数理经济学中的关键理论,有一个严重的缺陷——除了一些孤立的结果之外,它们本质上是非算法的。 随着互联网的出现,谷歌、雅虎、亚马逊、MSN 和 Ebay 等互联网公司定义并推出了全新且非常成功的市场,讨价还价已成为某些互联网交易中的一种选择机制,例如由priceline.com 和iOffer.com 制作的。 在这些发展的推动下,过去十年在开发市场和讨价还价算法方面已经做了很多工作。该项目将沿着几个令人兴奋的方向扩展这项工作:解决市场均衡有效计算中剩余的开放问题,例如分段费希尔模型-线性、凹面公用设施;将讨价还价算法扩展到更通用的效用函数,例如分段线性、凹效用;开发一种针对 Adwords 问题的算法,在随机设置下实现 1 - o(1) 预期竞争比,同时在最坏情况下实现 1 - 1/e 比;开发包含时间或激励兼容性等限制的讨价还价模型,从而使其更适合在互联网上使用;进一步发展我们对讨价还价和市场的博弈论特性的理解;进一步发展非线性凸规划组合解的原对偶范式,特别是在近似算法的设置中。该项目将增进我们对信息系统、市场和社会系统之间的相互作用和复杂相互依赖关系的理解。它将启用并支持高效的大规模分布式系统。该项目将为互联网上的市场和交易的计算方面提供算法和见解,从而帮助提高其运营效率。因此,该项目有望促进科学和工程的进步,并促进经济繁荣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vijay Vazirani其他文献

Algorithmic Game Theory
算法博弈论
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vijay Vazirani
  • 通讯作者:
    Vijay Vazirani

Vijay Vazirani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vijay Vazirani', 18)}}的其他基金

AF: Small: Algorithmic Problems in Online and Matching-Based Market Design
AF:小:在线和基于匹配的市场设计中的算法问题
  • 批准号:
    2230414
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Algorithms for Matching, Markets, and Matching-Markets
AF:小:匹配、市场和匹配市场的算法
  • 批准号:
    1815901
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
ICES: Large: Collaborative Research: Markets, Algorithms, Applications and the Digital Economy
ICES:大型:协作研究:市场、算法、应用和数字经济
  • 批准号:
    1216019
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Algorithims and Markets
算法和市场
  • 批准号:
    0728640
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Approximation Algorithms and Algorithmic Game Theory
近似算法和算法博弈论
  • 批准号:
    0515186
  • 财政年份:
    2005
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Polynomial Time Algorithms for Market Equilibria
市场均衡的多项式时间算法
  • 批准号:
    0311541
  • 财政年份:
    2003
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
ITR: Game Theoretic Approaches to the Internet Problems
ITR:解决互联网问题的博弈论方法
  • 批准号:
    0220343
  • 财政年份:
    2002
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Approximation Algorithms, with an Emphasis on LP-Duality Methods
近似算法,重点是 LP 对偶方法
  • 批准号:
    9820896
  • 财政年份:
    1999
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Two Themes in Approximation Algorithms: Use of the Primal- Dual Schema, and Problems in Network Design
逼近算法中的两个主题:原对偶模式的使用和网络设计中的问题
  • 批准号:
    9627308
  • 财政年份:
    1996
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
PYI: Algebraic Methods and Randomization for Obtaining Efficient Algorithms
PYI:获得高效算法的代数方法和随机化
  • 批准号:
    8552938
  • 财政年份:
    1987
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于球面约束和小波框架正则化的磁共振图像处理变分模型与快速算法
  • 批准号:
    12301545
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于谱图小波变换算法的2型糖尿病肠道微生物组学网络标志物筛选研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于非小细胞肺癌免疫疗效预测的复合传感模式电子鼻构建及智能算法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
基于相关关系信息增强的遥感图像小目标快速检测算法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342245
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2247576
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了