Deep Convective Transport to the Upper-Troposphere/Lower-Stratosphere
到对流层上层/平流层下层的深对流输送
基本信息
- 批准号:0918010
- 负责人:
- 金额:$ 33.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The gases in the upper troposphere and lower stratosphere (UT/LS) have a significant effect on the chemical and radiative budgets of the global atmosphere, crucial to understanding climate change. To understand the chemical makeup of the UT/LS region, a much better understanding of deep convective transport is needed. Transport in deep convection is unique in its ability to entrain constituents from the near surface and rapidly transport them to the UT/LS region where they are detrained. The variability of entrainment and detrainment in storms is not captured in current climate model convective transport parameterizations.This study proposes to address these problems with a tripartite approach. First, using dual-Doppler velocity data from field campaigns, the observed detrainment profile will be derived for a suite of storms covering a range of storm morphologies and background environments. Second, radar reflectivity data from the same field campaigns will be used to look for relationships between velocity-derived detrainment profiles and the reflectivity fields. The goal of the second part of the proposal is to define an algorithm for processing radar reflectivity observations that will allow for estimates of convective mass transport based on radar reflectivity observations over any region covered by the weather radar network. Third, cloud-resolving models will be used to assess the quality of reflectivity-based transport estimates for specific storms. Using the combination of radar reflectivity observations and modeling, a climatology of convective transport over the central United States will be compiled.Improvements in understanding and modeling of deep convective transport resulting from this study will directly benefit many complementary modeling efforts and improve understanding of convective transport of gases into the UT/LS. Ultimately, these results can be used to reduce uncertainty in climate prediction models, a critical need considering the climate challenges facing humanity.
该奖项是根据2009年《美国回收与再投资法》(公法111-5)资助的。对流层上层和下层平流层(UT/LS)的气体对全球大气的化学和辐射预算具有重大影响,对于理解气候变化至关重要。要了解UT/LS区域的化学构成,需要更好地了解深对流运输。深度对流的运输是其从近表面夹带成分并迅速运输到ut/ls区域的能力的独特之处。在当前气候模型对流传输参数化中未捕获风暴中夹带和损害的变异性。这项研究建议通过三方方法解决这些问题。首先,使用来自现场活动的双多普勒速度数据,将在涵盖一系列风暴形态和背景环境的一系列风暴中得出观察到的损害概况。其次,将使用来自同一字段活动的雷达反射率数据来寻找速度衍生的损失概况与反射率字段之间的关系。该提案第二部分的目的是定义用于处理雷达反射率观察的算法,该算法将允许根据天气雷达网络覆盖的任何区域的雷达反射率观测值估算对流质量传输。第三,将云解析模型用于评估特定风暴的基于反射率的运输估计的质量。将结合雷达反射率观察和建模的结合,将汇编在美国中部的对流运输的气候。在理解和建模这项研究的深对流运输方面的改进将直接受益进入UT/LS的气体。最终,这些结果可用于减少气候预测模型中的不确定性,考虑到人类面临的气候挑战,这是一个关键的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gretchen Mullendore其他文献
Gretchen Mullendore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gretchen Mullendore', 18)}}的其他基金
Collaborative Research: EarthCube RCN: "What About Model Data?": Determining Best Practices for Archiving and Reproducibility
协作研究:EarthCube RCN:“模型数据怎么样?”:确定存档和可重复性的最佳实践
- 批准号:
1929773 - 财政年份:2019
- 资助金额:
$ 33.32万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Big Weather Web: A Common and Sustainable Big Data Infrastructure in Support of Weather Prediction Research and Education in Universities
合作研究:SI2-SSI:大天气网:支持大学天气预报研究和教育的通用且可持续的大数据基础设施
- 批准号:
1450168 - 财政年份:2015
- 资助金额:
$ 33.32万 - 项目类别:
Standard Grant
Midlatitude Deep Convective Transport to the Upper-Troposphere and Lower-Stratosphere
中纬度深对流层对流层上层和平流层下层的输送
- 批准号:
1432930 - 财政年份:2015
- 资助金额:
$ 33.32万 - 项目类别:
Continuing Grant
EAGER: Educational Contributions to the Deep Convective Clouds and Chemistry (DC3) Field Campaign
EAGER:对深对流云和化学 (DC3) 实地活动的教育贡献
- 批准号:
1212279 - 财政年份:2012
- 资助金额:
$ 33.32万 - 项目类别:
Standard Grant
相似国自然基金
微重力下PCM液桥固液相变与热毛细对流耦合机理及主动调控
- 批准号:12372261
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
对流层参量预报支撑的面状水汽融合模型构建及其在短临降雨预报中的应用研究
- 批准号:42304018
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三周期极小曲面几何结构精确调控方法及单相对流传热强化机制
- 批准号:52306108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于层流送风的辐射/对流末端办公建筑供暖环境营造机理研究
- 批准号:52308107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于物理解释的深度学习云对流参数化方案研究
- 批准号:42305174
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Solute Transport Coupled to Geomechanics and Convective Mixing
职业:溶质输运与地质力学和对流混合的耦合
- 批准号:
2240048 - 财政年份:2023
- 资助金额:
$ 33.32万 - 项目类别:
Continuing Grant
Microfluidics to explore ultrafast cell deformations to deliver large cargo via convective transport
微流体技术探索超快细胞变形,通过对流运输运送大件货物
- 批准号:
10707493 - 财政年份:2022
- 资助金额:
$ 33.32万 - 项目类别:
Study on active control of instability and convective transport in detached recombining plasma
分离重组等离子体不稳定性和对流输运的主动控制研究
- 批准号:
22H01203 - 财政年份:2022
- 资助金额:
$ 33.32万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Microfluidics to explore ultrafast cell deformations to deliver large cargo via convective transport
微流体技术探索超快细胞变形,通过对流运输运送大件货物
- 批准号:
10522049 - 财政年份:2022
- 资助金额:
$ 33.32万 - 项目类别:
Non-linear Convective Heat Transport and Drift-Alfven Fluctuations in Multiple Interacting Magnetized Electron Temperature Filaments
多个相互作用的磁化电子温度丝中的非线性对流热传输和漂移阿尔文波动
- 批准号:
504692-2017 - 财政年份:2019
- 资助金额:
$ 33.32万 - 项目类别:
Postgraduate Scholarships - Doctoral