SHF: Small: Collaborative Research: Taxonomy for the Automated Tuning of Matrix Algebra Software
SHF:小型:协作研究:矩阵代数软件自动调整的分类法
基本信息
- 批准号:0916474
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CCF - 0917324 SHF: Small: Collaborative Research: Taxonomy for the Automated Tuning of Matrix Algebra SoftwarePI Jessup, Elizabeth R. University of Colorado at BoulderCCF ? 0916474PI Norris, Boyana University of ChicagoAbstract:In response to the need for high-performance scientific software, we propose to study ways to ease the production of optimized matrix algebra software. Each step of the code development process presently involves many choices, most requiring expertise in numerical computation, mathematical software, compilers, or computer architecture. The process of converting matrix algebra from abstract algorithms to high-quality implementations is a complex one. When leveraging existing high-performance numerical libraries, the application developer must select the appropriate numerical routines and then devise ways to make these routines run efficiently on the architecture at hand. Once the numerical routine has been identified, the process of including it into a larger application can often be tedious or difficult. The tuning of the application itself then presents a myriad of options generally centered around one or more of the following three approaches: manually optimizing code fragments; using tuned libraries for key numerical algorithms; and, less frequently, using compiler-based source transformation tools for loop-level optimizations. The goals of the proposed research are three-fold. First, we will construct a taxonomy of available software that can be used to build highly-optimized matrix algebra computations. The taxonomy will provide an organized anthology of software components and programming tools needed for that task. The taxonomy will serve as a guide to practitioners seeking to learn what is available for their programming tasks, how to use it, and how the various parts fit together. It will build upon and improve existing collections of numerical software, adding tools for the tuning of matrix algebra computations. Second, we will develop an initial set of tools that operate in conjunction with this taxonomy. In particular, we will provide an interface that takes a high-level description of a matrix algebra computation and produces a customizable code template using the software in the taxonomy. The template will aid the developer at all steps of the process from the initial construction of Basic Linear Algebra Subprogram (BLAS)-based codes through the full optimization of that code. Initially, the tools will accept a MATLAB prototype and produce optimized Fortran or C. Finally, we will advance the state-of-the-art in tuning tools by improving some of the tools included in the taxonomy, broadening their ranges of functionality in terms of problem domains and languages.
CCF -0917324 SHF:小:合作研究:用于自动调整的分类学矩阵代数软毛皮杰西普,伊丽莎白·R·科罗拉多大学的伊丽莎白·R·科罗拉多大学的分类学? 0916474PI Norris,芝加哥大学Boyana University:响应对高性能Scientifi C软件的需求,我们建议研究减轻优化基质代数软件的生产方法。代码开发过程的每个步骤目前都涉及许多选择,大多数需要数字计算,数学软件,编译器或计算机体系结构方面的专业知识。将矩阵代数从抽象算法转换为高质量实现的过程是一个复杂的实现。当利用现有的高性能数字库时,应用程序开发人员必须选择适当的数值例程,然后设计方法以使这些例程运行Effi在手头的体系结构上非常有效。一旦识别了数值例程,将其包含在较大应用程序中的过程通常可能是乏味的或diffi邪教。然后,对应用程序本身的调整提出了多种选择,通常围绕以下三种方法中的一种或多种:手动优化代码片段;使用调谐的库作为密钥数值算法;而且,使用基于编译器的源转换工具进行循环级优化的频率较低。拟议研究的目标是三倍。首先,我们将构建可用软件的分类法,可用于构建高度优化的矩阵代数计算。分类法将提供该任务所需的软件组件和编程工具的组织选集。分类法将作为寻求学习其编程任务,如何使用它以及如何在一起的各种零件的实践者指南。它将建立并改善现有的数值软件集合,并添加用于调整矩阵代数计算的工具。其次,我们将开发一组与此分类法一起运行的初始工具。特别是,我们将提供一个接口,对矩阵代数计算进行高级描述,并使用分类法中的软件生成可自定义的代码模板。该模板将通过基于基本的线性代数子程序(BLAS)基于该代码的完整优化的基本线性代数子程序(BLA)代码的初始构建,从而帮助开发人员。最初,工具将接受MATLAB原型,并生产优化的Fortran或C。最后,我们将通过改善分类法中包含的一些工具来提高调整工具的最新调整工具,从而扩大其功能范围,以问题域和语言和语言。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boyana Norris其他文献
Automatic Differentiation: Applications, Theory, and Implementations (Lecture Notes in Computational Science and Engineering)
自动微分:应用、理论和实现(计算科学与工程讲义)
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Martin Bücker;G. Corliss;P. Hovland;U. Naumann;Boyana Norris - 通讯作者:
Boyana Norris
A distributed application server for automatic differentiation
用于自动微分的分布式应用服务器
- DOI:
10.1109/ipdps.2001.925174 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Boyana Norris;P. Hovland - 通讯作者:
P. Hovland
Adaptive software for scientific computing: co-managing quality-performance-power tradeoffs
用于科学计算的自适应软件:共同管理质量-性能-功耗权衡
- DOI:
10.1109/ipdps.2005.83 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
P. Raghavan;M. J. Irwin;L. McInnes;Boyana Norris - 通讯作者:
Boyana Norris
Sensitivity analysis and design optimization through automatic differentiation
通过自动微分进行敏感性分析和设计优化
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
P. Hovland;Boyana Norris;M. Strout;S. Bhowmick;J. Utke - 通讯作者:
J. Utke
A Parallel Algorithm Template for Updating Single-Source Shortest Paths in Large-Scale Dynamic Networks
大规模动态网络中单源最短路径更新的并行算法模板
- DOI:
10.1109/tpds.2021.3084096 - 发表时间:
2022 - 期刊:
- 影响因子:5.3
- 作者:
Arindam Khanda;S. Srinivasan;S. Bhowmick;Boyana Norris;Sajal K. Das - 通讯作者:
Sajal K. Das
Boyana Norris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boyana Norris', 18)}}的其他基金
Collaborative Research: Framework Implementation: CSSI: CANDY: Cyberinfrastructure for Accelerating Innovation in Network Dynamics
合作研究:框架实施:CSSI:CANDY:加速网络动态创新的网络基础设施
- 批准号:
2104115 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
SPX: Collaborative Research: SANDY: Sparsification-based Approach for Analyzing Network Dynamics
SPX:协作研究:SANDY:基于稀疏化的网络动态分析方法
- 批准号:
1725585 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Automated Numerical Solver EnviRonment (ANSER)
SHF:小型:协作研究:自动数值求解器环境 (ANSER)
- 批准号:
1717883 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Collaborative Research: Lighthouse: A User- Centered Web System for High-Performance Software Development
EAGER:协作研究:Lighthouse:用于高性能软件开发的以用户为中心的 Web 系统
- 批准号:
1550202 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
- 批准号:61661005
- 批准年份:2016
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
- 批准号:61301143
- 批准年份:2013
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
- 批准号:81072465
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
基于小世界网络的传感器网络研究
- 批准号:60472059
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
- 批准号:
2232720 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant