SHF: Small: Collaborative Research: Taxonomy for the Automated Tuning of Matrix Algebra Software
SHF:小型:协作研究:矩阵代数软件自动调整的分类法
基本信息
- 批准号:0916474
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CCF - 0917324 SHF: Small: Collaborative Research: Taxonomy for the Automated Tuning of Matrix Algebra SoftwarePI Jessup, Elizabeth R. University of Colorado at BoulderCCF ? 0916474PI Norris, Boyana University of ChicagoAbstract:In response to the need for high-performance scientific software, we propose to study ways to ease the production of optimized matrix algebra software. Each step of the code development process presently involves many choices, most requiring expertise in numerical computation, mathematical software, compilers, or computer architecture. The process of converting matrix algebra from abstract algorithms to high-quality implementations is a complex one. When leveraging existing high-performance numerical libraries, the application developer must select the appropriate numerical routines and then devise ways to make these routines run efficiently on the architecture at hand. Once the numerical routine has been identified, the process of including it into a larger application can often be tedious or difficult. The tuning of the application itself then presents a myriad of options generally centered around one or more of the following three approaches: manually optimizing code fragments; using tuned libraries for key numerical algorithms; and, less frequently, using compiler-based source transformation tools for loop-level optimizations. The goals of the proposed research are three-fold. First, we will construct a taxonomy of available software that can be used to build highly-optimized matrix algebra computations. The taxonomy will provide an organized anthology of software components and programming tools needed for that task. The taxonomy will serve as a guide to practitioners seeking to learn what is available for their programming tasks, how to use it, and how the various parts fit together. It will build upon and improve existing collections of numerical software, adding tools for the tuning of matrix algebra computations. Second, we will develop an initial set of tools that operate in conjunction with this taxonomy. In particular, we will provide an interface that takes a high-level description of a matrix algebra computation and produces a customizable code template using the software in the taxonomy. The template will aid the developer at all steps of the process from the initial construction of Basic Linear Algebra Subprogram (BLAS)-based codes through the full optimization of that code. Initially, the tools will accept a MATLAB prototype and produce optimized Fortran or C. Finally, we will advance the state-of-the-art in tuning tools by improving some of the tools included in the taxonomy, broadening their ranges of functionality in terms of problem domains and languages.
CCF - 0917324 SHF:小型:协作研究:矩阵代数软件自动调整的分类法PI Jessup,Elizabeth R. 科罗拉多大学博尔德分校CCF? 0916474PI Norris,芝加哥博亚纳大学摘要:为了满足对高性能科学软件的需求,我们建议研究简化优化矩阵代数软件生成的方法。目前,代码开发过程的每个步骤都涉及许多选择,最需要数值计算、数学软件、编译器或计算机体系结构方面的专业知识。将矩阵代数从抽象算法转换为高质量实现的过程是一个复杂的过程。当利用现有的高性能数值库时,应用程序开发人员必须选择适当的数值例程,然后设计使这些例程在现有架构上高效运行的方法。一旦确定了数值例程,将其包含到更大的应用程序中的过程通常会很乏味或困难。然后,应用程序本身的调整呈现出无数的选项,通常围绕以下三种方法中的一种或多种:手动优化代码片段;使用关键数值算法的调优库;并且,不太频繁地使用基于编译器的源转换工具进行循环级优化。拟议研究的目标有三个。首先,我们将构建可用软件的分类,可用于构建高度优化的矩阵代数计算。该分类法将提供该任务所需的软件组件和编程工具的有组织的选集。该分类法将为从业者提供指南,帮助他们了解哪些内容可用于其编程任务、如何使用它以及各个部分如何组合在一起。它将建立并改进现有的数值软件集合,添加用于调整矩阵代数计算的工具。其次,我们将开发一套与该分类法结合使用的初始工具。特别是,我们将提供一个界面,该界面采用矩阵代数计算的高级描述,并使用分类法中的软件生成可定制的代码模板。该模板将在整个过程的所有步骤中为开发人员提供帮助,从基于基本线性代数子程序 (BLAS) 的代码的初始构建到该代码的全面优化。最初,这些工具将接受 MATLAB 原型并生成优化的 Fortran 或 C。最后,我们将通过改进分类中包含的一些工具来推进最先进的调优工具,从而扩大其功能范围问题领域和语言。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boyana Norris其他文献
A distributed application server for automatic differentiation
用于自动微分的分布式应用服务器
- DOI:
10.1109/ipdps.2001.925174 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Boyana Norris;P. Hovland - 通讯作者:
P. Hovland
Automatic Differentiation: Applications, Theory, and Implementations (Lecture Notes in Computational Science and Engineering)
自动微分:应用、理论和实现(计算科学与工程讲义)
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Martin Bücker;G. Corliss;P. Hovland;U. Naumann;Boyana Norris - 通讯作者:
Boyana Norris
Adaptive software for scientific computing: co-managing quality-performance-power tradeoffs
用于科学计算的自适应软件:共同管理质量-性能-功耗权衡
- DOI:
10.1109/ipdps.2005.83 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
P. Raghavan;M. J. Irwin;L. McInnes;Boyana Norris - 通讯作者:
Boyana Norris
Sensitivity analysis and design optimization through automatic differentiation
通过自动微分进行敏感性分析和设计优化
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
P. Hovland;Boyana Norris;M. Strout;S. Bhowmick;J. Utke - 通讯作者:
J. Utke
Reliable Generation of High-Performance Matrix Algebra
可靠地生成高性能矩阵代数
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:2.7
- 作者:
T. Nelson;Geoffrey Belter;Jeremy G. Siek;E. Jessup;Boyana Norris - 通讯作者:
Boyana Norris
Boyana Norris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boyana Norris', 18)}}的其他基金
Collaborative Research: Framework Implementation: CSSI: CANDY: Cyberinfrastructure for Accelerating Innovation in Network Dynamics
合作研究:框架实施:CSSI:CANDY:加速网络动态创新的网络基础设施
- 批准号:
2104115 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
SPX: Collaborative Research: SANDY: Sparsification-based Approach for Analyzing Network Dynamics
SPX:协作研究:SANDY:基于稀疏化的网络动态分析方法
- 批准号:
1725585 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Automated Numerical Solver EnviRonment (ANSER)
SHF:小型:协作研究:自动数值求解器环境 (ANSER)
- 批准号:
1717883 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Collaborative Research: Lighthouse: A User- Centered Web System for High-Performance Software Development
EAGER:协作研究:Lighthouse:用于高性能软件开发的以用户为中心的 Web 系统
- 批准号:
1550202 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
单细胞分辨率下的石杉碱甲介导小胶质细胞极化表型抗缺血性脑卒中的机制研究
- 批准号:82304883
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
- 批准号:82372561
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
- 批准号:82373082
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FATP2/HILPDA/SLC7A11轴介导肿瘤相关中性粒细胞脂代谢重编程影响非小细胞肺癌放疗免疫的作用和机制研究
- 批准号:82373304
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2334624 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant