CNH: Fine-Scale Dynamics of Human Adaptation in Coupled Natural and Social Systems: An Integrated Computational Approach Applied to Three Fisheries
CNH:耦合自然和社会系统中人类适应的精细尺度动力学:应用于三种渔业的综合计算方法
基本信息
- 批准号:0909449
- 负责人:
- 金额:$ 102.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-10-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is to gain a better understanding of the way competition between individual fishermen lead to the emergence of private incentives and informal social arrangements that are (or are not) consistent with conservation of the resource. These informal arrangements and incentives are important because they help us understand the extent to which private interests might strengthen or weaken on-going resource management and, consequently, the sustainability of coupled human and natural systems. The broad hypothesis driving the study is that the informal social structure that emerges from competitive interactions among fishermen reflects the particular circumstances of the natural system. In some cases, successful competition requires secretive non-cooperative behavior; in others, cooperation tends to yield better competitive results. These different outcomes have different, and not always obvious, impacts on the feasibility and effectiveness of resource management. We think of the relevant human social process as one in which individuals compete with one another through time-consuming and costly acquisition of valuable knowledge about a complex resource. To compete successfully, individuals must balance the immediate benefits that come from exploiting knowledge they currently hold with the costly need to explore for new knowledge; additionally, when seeking new knowledge, individuals must balance the costs and benefits of acquiring knowledge through cooperation or through autonomous search. In order to model this kind of competitive process, we employ a significantly modified version of a technique borrowed from computer science called a learning classifier system (LCS). LCS uses a genetic algorithm to mimic the way an agent (here a fisherman) uses his experience to continuously refine his knowledge and decisions about his natural and social environment. The importance of LCS is that it permits simulation of the co-evolving strategic interactions of self-interested fishermen who are only partially informed about the state of the resource they are exploiting and the fishermen with whom they compete. The problem of understanding these kinds of competitive dynamics is evident in almost all coupled natural and human systems. We apply the approach to a comparative study of three Gulf of Maine fisheries which are characterized by significantly different temporal and spatial dynamics - sea urchins, lobster and cod. Each fishery will be modeled using a biophysical simulator of the natural system and a tightly integrated multi-agent learning classifier system that simulates the learning and interactions of fishermen. The design of each model will be based in part on extensive interviews with fishermen about their knowledge of the dynamics of the fisheries in which they work. We will use these models to explore past and prospective policy problems in each fishery. Beyond the immediate applicability of these explorations, we expect this project will provide a foundation for the wider use of multi-agent learning models in other coupled systems. Project outcomes will be transmitted regularly to industry and managers. Principal investigators include economists, biologists, anthropologists and computer scientists. All the PIs have years of experience in the fisheries of the Gulf of Maine and have well developed relationships with individual fishermen and managers. A masters level student in marine policy, a Ph.D. student in computer or marine science and a post-doctoral researcher in computer science will be employed on the project. In addition, the project will develop an undergraduate course in complex adaptive social-ecological systems and a graduate student/faculty workshop in the same area.
该项目的目的是更好地了解各个渔民之间的竞争方式导致私人激励措施和非正式社会安排的出现(或不)与资源的保护一致。这些非正式的安排和激励措施很重要,因为它们有助于我们了解私人利益可能在多大程度上加强或削弱正在进行的资源管理,从而耦合人类和自然系统的可持续性。推动研究的广泛假设是,渔民之间的竞争互动产生的非正式社会结构反映了自然系统的特定情况。在某些情况下,成功的竞争需要秘密的非同伴行为;在其他情况下,合作倾向于产生更好的竞争结果。这些不同的结果对资源管理的可行性和有效性有所不同,也不总是显而易见的影响。我们认为相关的人类社会过程是个人通过耗时且昂贵的有关复杂资源的宝贵知识而相互竞争的人。为了成功竞争,个人必须平衡利用目前拥有的知识和为新知识探索的昂贵需求所带来的直接利益;此外,当寻求新知识时,个人必须平衡通过合作或通过自动搜索获取知识的成本和收益。为了建模这种竞争过程,我们采用了从称为学习分类器系统(LCS)的计算机科学借用的技术的重大修改版本。 LCS使用一种遗传算法来模仿代理商(这里是渔夫)利用他的经验来不断地完善他对自然和社会环境的知识和决定。 LCS的重要性在于,它允许模拟自私自利的渔民的共同发展的战略互动,他们仅部分了解他们正在利用的资源状态以及与之竞争的渔民。在几乎所有耦合的自然和人类系统中,了解这些类型的竞争动态的问题是显而易见的。我们将方法应用于对三个缅因州渔业的比较研究,这些研究的特征是时间和空间动力学明显不同 - 海胆,龙虾和鳕鱼。 每种渔业将使用自然系统的生物物理模拟器和紧密整合的多机构学习分类器系统进行建模,该系统模拟渔民的学习和相互作用。每个模型的设计将基于与渔民有关他们对工作渔业动态的了解的广泛采访。我们将使用这些模型来探索每种渔业中的过去和潜在政策问题。除了这些探索的直接适用性外,我们预计该项目将为在其他耦合系统中更广泛使用多代理学习模型提供基础。项目成果将定期传输给行业和经理。主要研究人员包括经济学家,生物学家,人类学家和计算机科学家。所有PI在缅因州湾的渔业中都有多年的经验,并与个别渔民和经理建立了良好的关系。海洋政策的硕士学位学生,博士学位。该项目将使用计算机或海洋科学领域的学生以及计算机科学的博士后研究员。此外,该项目将在复杂的自适应社会生态系统和同一领域的研究生/教师研讨会上开发一门本科课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Wilson其他文献
Providing ethics advice in a pandemic, in theory and in practice: A taxonomy of ethics advice.
在理论和实践中在大流行中提供道德建议:道德建议的分类。
- DOI:
10.1111/bioe.13208 - 发表时间:
2023 - 期刊:
- 影响因子:2.2
- 作者:
James Wilson;Jack Hume;C. O’Donovan;M. Smallman - 通讯作者:
M. Smallman
High-Resolution Ground-Based Magnetic Survey of a Buried Volcano: Anomaly B, Amargosa Desert, NV
对埋藏火山进行高分辨率地基磁力勘测:异常 B,内华达州阿马戈萨沙漠
- DOI:
10.5038/2163-338x.1.3 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
O. George;J. McIlrath;A. Farrell;E. Gallant;Samantha Tavarez;A. Marshall;C. McNiff;M. Njoroge;James Wilson;C. Connor;L. Connor;S. Kruse - 通讯作者:
S. Kruse
Do clusters yield positive effects on firm performance? – a review of cluster programme effect analyses in Sweden and internationally
集群对企业绩效产生积极影响吗——瑞典和国际集群计划效果分析回顾
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
E. Wise;James Wilson;Madeline Smith - 通讯作者:
Madeline Smith
Examining patient benefit
检查患者利益
- DOI:
10.7861/fhj.2022-0128 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
James Wilson;P. Nachev;Dan Herron;N. McNally;Bryan Williams;Geraint Rees - 通讯作者:
Geraint Rees
Active carbons from coals
煤中的活性炭
- DOI:
10.1016/0016-2361(81)90145-9 - 发表时间:
1981 - 期刊:
- 影响因子:7.4
- 作者:
James Wilson - 通讯作者:
James Wilson
James Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Wilson', 18)}}的其他基金
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
The Annual Data Institute Conference
年度数据研究所会议
- 批准号:
1841307 - 财政年份:2019
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
Collaborative Research: New Algorithms for Group Isomorphism
协作研究:群同构的新算法
- 批准号:
1620454 - 财政年份:2016
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
Funding for a conference on Groups, Computation, and Geometry, June 9-13, 2014
为 2014 年 6 月 9 日至 13 日举行的群、计算和几何会议提供资助
- 批准号:
1406494 - 财政年份:2014
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
Collaborative Research: Effective Sequential Procedures for Risk and Error Estimation in Steady-state Simulation
协作研究:稳态仿真中风险和误差估计的有效顺序程序
- 批准号:
1232998 - 财政年份:2012
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
RAPID: A Retrospective Oral History of Computer Simulation
RAPID:计算机模拟的回顾性口述历史
- 批准号:
1150107 - 财政年份:2011
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
Collaborative Doctoral 2010 Grant - Liberty and Public Protection in Infectious Disease Policy
2010 年合作博士补助金 - 传染病政策中的自由和公共保护
- 批准号:
AH/I505695/1 - 财政年份:2010
- 资助金额:
$ 102.13万 - 项目类别:
Training Grant
International Planning Visit: Linking Physiology and Dispersal to Population Cycles in Norwegian Lemmings; a New Look at the Charnov-Finerty Hypothesis
国际规划访问:将挪威旅鼠的生理学和传播与种群周期联系起来;
- 批准号:
0757022 - 财政年份:2008
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
Fabrication, Operation and Data Analysis of the University of Denver Low Turbulence Inlets on the NCAR C-130 for ACE-Asia
丹佛大学 NCAR C-130 ACE-Asia 低湍流入口的制造、操作和数据分析
- 批准号:
0098122 - 财政年份:2001
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
相似国自然基金
为了美好的生活而工作:虚拟化团队工作模式下员工工作家庭平衡的新思路
- 批准号:72372056
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
MAP2的m6A甲基化在七氟烷引起SST神经元树突发育异常及精细运动损伤中的作用机制研究
- 批准号:82371276
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
基于“双碳”背景下的“绿色材料与美好生活”主题科普活动及其多媒体传播
- 批准号:52242208
- 批准年份:2022
- 资助金额:10.00 万元
- 项目类别:专项项目
互联网能使生活更美好吗?基于互联网背景的工作-生活渗透对员工幸福感的影响研究
- 批准号:71872130
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
辣椒胞质雄性不育恢复性主效基因精密图谱分析
- 批准号:30800752
- 批准年份:2008
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 102.13万 - 项目类别:
Fellowship
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
- 批准号:
2244690 - 财政年份:2024
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
MCA: Physiology-based mechanistic models of vector fitness to forecast species responses to coarse- and fine scale anthropogenic environmental change
MCA:基于生理学的矢量适应性机制模型,用于预测物种对粗尺度和细尺度人为环境变化的反应
- 批准号:
2322213 - 财政年份:2023
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
Towards Real-Time Fine-Grained Tracking in Distributed Large-Scale RF Tag Systems
实现分布式大规模射频标签系统中的实时细粒度跟踪
- 批准号:
2225337 - 财政年份:2023
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
MRI: Acquisition of a Lab-Scale Instrument for X-ray Absorption Fine Structure
MRI:购买用于 X 射线吸收精细结构的实验室规模仪器
- 批准号:
2215769 - 财政年份:2023
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant