Adaptation and Percolation in Complex Networks
复杂网络中的适应和渗透
基本信息
- 批准号:0908221
- 负责人:
- 金额:$ 24.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Many important dynamical processes take place on networks. Examples include epidemic propagation, genetic regulation, synchronization, information propagation, and many more. Often, these dynamical processes have a modifying effect on the network structure. This project will study the bidirectional interaction of network structure and network processes. As an important and representative case, the synchronization of network-coupled dynamical systems will be studied when network links and oscillator parameters adapt in response to node dynamics. Network and parameter adaptation will be investigated numerically and analytically by developing averaged equations that describe the evolution of the network and oscillator parameters. Possible network fixed points, bifurcations, and attractors in low-dimensional subsets of the space of networks will be studied as a function of various network measures and adaption rules. In a related project, percolation in non-Markovian networks will be studied. The effect of network structure on the percolation threshold has been studied for Markovian networks and for locally tree-like networks. The validity of the Markovian assumption will be tested for various networks arising in applications. Additionally, a way to determine the percolation threshold in non-Markovian networks that are not tree-like will be sought.Network percolation is related to models of epidemic propagation, the propagation of information in a network, or the robustness of networks under attack or random failures. For example, in the epidemic context, the percolation threshold separates networks in which a disease will die out from those in which it will propagate to infect a significant fraction of the population. Our theoretical understanding of how network structure (for example, how people interact with each other during an epidemic) determines this transition is restricted to networks satisfying specific conditions. One of the goals of this project is to directly test whether or not networks found in practice, such as social networks, satisfy them. In addition, existing theoretical tools will be extended to networks that do not satisfy these conditions. Many processes that can be described in terms of networks, such as communication networks of unmanned aerial vehicles, food-chain networks, and neuron networks, do not take place on a static network, but on a network that changes in response to node dynamics. The other part of the project seeks to increase our understanding of how networks change in response to the processes that they mediate, and how they can be described as dynamical objects.
该奖项是根据2009年《美国复苏与再投资法》(公法111-5)资助的。网络上发生了许多重要的动态过程。例子包括流行病的传播,遗传调节,同步,信息传播等等。通常,这些动态过程对网络结构产生修改。该项目将研究网络结构和网络过程的双向相互作用。作为一种重要且具有代表性的情况,当网络链接和振荡器参数适应节点动力学时,将研究网络耦合动力学系统的同步。通过开发描述网络和振荡器参数演化的平均方程,将在数值和分析上对网络和参数适应进行研究。将研究网络空间中的低维基集中可能的网络固定点,分叉和吸引子,这是各种网络测量和适应规则的函数。在一个相关的项目中,将研究非马克维亚网络中的渗透。已经研究了Markovian网络和本地树状网络的网络结构对渗滤阈值的影响。马尔可夫假设的有效性将测试针对应用中产生的各种网络。此外,将要确定非马克维亚网络中不类似树的渗透阈值的方法。网络渗透与流行病的传播模型,网络中信息的传播或攻击下的网络的鲁棒性有关。例如,在流行病的背景下,渗透阈值将疾病将消失的网络分开,而疾病将使疾病传播以感染大量人群的那些网络。我们对网络结构的理论理解(例如,人们如何在流行病期间相互互动)决定了这种过渡仅限于满足特定条件的网络。该项目的目标之一是直接测试在社交网络等实践中发现的网络是否使它们满意。此外,现有的理论工具将扩展到不满足这些条件的网络。可以用网络来描述的许多过程,例如无人机,食品链网络和神经元网络的通信网络,不是在静态网络上进行的,而是在响应节点动力学的响应的网络上进行。该项目的另一部分旨在提高我们对网络如何响应其所述过程以及如何将它们描述为动态对象的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Restrepo其他文献
<em>SF3B1</em> Mutation Significance in Myeloid Neoplasms without Anemia
- DOI:
10.1182/blood-2024-206109 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Sergi Camarillas;Esther Alonso;Xavier Calvo;Leonor Arenillas;Alba Mesa;Lurdes Zamora;María Eugenia Rivero;Evelin Casanova;Juan Restrepo;Nuria Brey;María Rozman;Sofia Muzio;Irene Medina;Laura Gallur;María Gabarrós-Subirà;Adoracion Blanco;Margarita Ortega-Blanco;Gloria Hidalgo-Gomez;Julia Montoro;Andres Jerez - 通讯作者:
Andres Jerez
Crafting On-Skin Interfaces: An Embodied Prototyping Journey
制作皮肤界面:具体的原型制作之旅
- DOI:
10.1145/3461778.3462055 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Juan Restrepo;S. Vos;E. Verhagen;Carine Lallemand - 通讯作者:
Carine Lallemand
Assessment of the IPSS-M in Chronic Myelomonocytic Leukemia
- DOI:
10.1182/blood-2024-204557 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Laura Palomo;Mireia Morgades;Manja Meggendorfer;Marina Díaz-Beyá;Helena Pomares;Guillermo Ramil López;Mariam Ibañez;Mar Tormo;Felix Lopez;Alejandro Avendaño Pita;Juan Carlos Caballero;Jordi Vila Bou;Juan Restrepo;Veronica Roldan;Pilar Galán;Estefania Cerezo Velasco;Cristina Notario;ANA Garcia Feria;Torsten Haferlach;Sandra Castaño-Díez - 通讯作者:
Sandra Castaño-Díez
Juan Restrepo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Restrepo', 18)}}的其他基金
Conference: Computational Approaches for Contagion on Complex Social Systems
会议:复杂社会系统传染的计算方法
- 批准号:
2224051 - 财政年份:2022
- 资助金额:
$ 24.81万 - 项目类别:
Standard Grant
Synchronization in Networks with Higher Order Interactions
具有高阶交互的网络同步
- 批准号:
2205967 - 财政年份:2022
- 资助金额:
$ 24.81万 - 项目类别:
Standard Grant
HNDS-I: Using Hypergraphs to Study Spreading Processes in Complex Social Networks
HNDS-I:使用超图研究复杂社交网络中的传播过程
- 批准号:
2121905 - 财政年份:2021
- 资助金额:
$ 24.81万 - 项目类别:
Standard Grant
Collaborative Research: A Lagrangian Description of Breaking Ocean Surface Waves from Laboratory Measurements and Stochastic Parameterizations.
合作研究:根据实验室测量和随机参数化对破碎海洋表面波浪的拉格朗日描述。
- 批准号:
1524241 - 财政年份:2014
- 资助金额:
$ 24.81万 - 项目类别:
Standard Grant
Collaborative Research: A Lagrangian Description of Breaking Ocean Surface Waves from Laboratory Measurements and Stochastic Parameterizations.
合作研究:根据实验室测量和随机参数化对破碎海洋表面波浪的拉格朗日描述。
- 批准号:
1434198 - 财政年份:2014
- 资助金额:
$ 24.81万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Wave Breaking Dissipation Modeling and Parametrization in Wave/Current Interactions
CMG 合作研究:波浪/水流相互作用中的破波耗散建模和参数化
- 批准号:
0723765 - 财政年份:2007
- 资助金额:
$ 24.81万 - 项目类别:
Standard Grant
Collaborative Research: CMG: Mathematical Theory and Modeling of Wave-Current Interaction
合作研究:CMG:波流相互作用的数学理论和建模
- 批准号:
0327617 - 财政年份:2003
- 资助金额:
$ 24.81万 - 项目类别:
Continuing Grant
相似国自然基金
垃圾渗滤液浓缩液电化学处理过程关键氯代有机物的形成机制与生物毒性减量策略
- 批准号:52370151
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
群体感应淬灭对渗滤液诱导的生物结垢调控机制
- 批准号:22306006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
极端污染渗滤液对土工合成材料劣化及衬里界面力学特性影响微细观机理的温控试验研究
- 批准号:42372304
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
铁基MOFs/次氯酸盐类芬顿法同步脱除垃圾渗滤液中C/N的机理及性能研究
- 批准号:22306038
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于Cu-Cl配位的铜基类Fenton体系降解垃圾渗滤液膜浓缩液机理研究
- 批准号:52300034
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Bond percolationゲルによる網目構造と力学物性の相関解明
使用键渗流凝胶阐明网络结构与机械性能之间的相关性
- 批准号:
23K23403 - 财政年份:2024
- 资助金额:
$ 24.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidating subsurface water percolation processes that control the depth of shallow sliding surface on soil-mantled hillslopes
阐明控制土覆盖山坡上浅滑动面深度的地下水渗滤过程
- 批准号:
23KJ1244 - 财政年份:2023
- 资助金额:
$ 24.81万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Percolation Theory and Related Topics
渗滤理论及相关主题
- 批准号:
2246494 - 财政年份:2023
- 资助金额:
$ 24.81万 - 项目类别:
Continuing Grant
Bond percolationゲルによる網目構造と力学物性の相関解明
使用键渗流凝胶阐明网络结构与机械性能之间的相关性
- 批准号:
22H02135 - 财政年份:2022
- 资助金额:
$ 24.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Coupling of Modified Equation of State and Percolation Theory to Study Static and Dynamic Non-Equilibrium Phase Behavior of Heavy Oil in the Presence of Porous Medium
修正状态方程与渗流理论耦合研究多孔介质中稠油静态和动态非平衡相行为
- 批准号:
RGPIN-2019-06103 - 财政年份:2022
- 资助金额:
$ 24.81万 - 项目类别:
Discovery Grants Program - Individual