Density and tail estimates via Malliavin calculus, and applications
通过 Malliavin 演算进行密度和尾部估计以及应用
基本信息
- 批准号:0907321
- 负责人:
- 金额:$ 23.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The PI's three-year research program will investigate fundamental aspects of random variables which can be understood within the framework of Wiener spaces. Specifically, in the context of the Wiener process W (standard Brownian motion), if a random variable X can be written as a function of the path of W which is differentiable in the sense of Malliavin, meaning that its Frechet derivative DX in the direction of any appropriate perturbation exists, then it is possible to form a function g, equal to an averaged inner product of DX and of an exponentially correlated copy of DX, and use this function g to write estimates for the tails and even the density of X. An indication of this methodology is recorded in an article by the PI and Ivan Nourdin. The PI plan to apply the methodology to find sharp upper and lower bounds on densities of random variables of interest to probabilists, including the maxima of Gaussian fields, and also to tackle related problems such as small ball probabilities for fractional Brownian motion. A connection between Malliavin derivatives and Stein's method, which was discovered by Nourdin and Peccati, will also be investigated, and may help in analyzing random variables whose behavior is closer to non Gaussian distributions, including Gamma distributions, within the so-called Pearson class.The broader scientific significance of the proposed research begins with applications to the effect of chaotic environments on the stabilization or destabilization of physical or chemical systems, including polymers in random media. There should be a range of spatial correlation lengths in the medium which imply a continuum of behaviors, exhibiting richer phenomena than what theoretical physicists have predicted. Taking the modeling further, the PI plans to analyze the practical consequences of the project in those areas where long memory is an empirical fact, including financial econometrics, internet traffic, and climate prediction. Ph.D. students will take part in the fundamental aspects of the research. Some theoretical quantitative issues, such as small ball constants, fluctuation exponents, and long-memory parameter estimation, will be complemented with numerical simulations conducted by MS and undergraduate students. Involving students in fundamental research with real-world applications will broadly disseminate scientific understanding.The PI will encourage students from underrepresented groups to join this research program.
该奖项是根据2009年《美国回收与再投资法》(公法111-5)资助的。PI的三年研究计划将调查随机变量的基本方面,这些方面可以在Wiener空间的框架内理解。 Specifically, in the context of the Wiener process W (standard Brownian motion), if a random variable X can be written as a function of the path of W which is differentiable in the sense of Malliavin, meaning that its Frechet derivative DX in the direction of any appropriate perturbation exists, then it is possible to form a function g, equal to an averaged inner product of DX and of an exponentially correlated copy of DX, and use this function g to write PI和Ivan Nourdin的文章中记录了该方法的指示。 PI计划采用该方法,以发现对概率的随机变量的密度尖锐的上限和下限,包括高斯领域的最大值,并解决相关问题,例如小球概率的小球概率。 诺尔丁和佩卡蒂发现的malliavin衍生物与斯坦因的方法之间的联系也将进行研究,并可能有助于分析其行为更接近非高斯分布的随机变量,包括γ分布,包括粘液分布,在所谓的Pearson分类中,在拟议的稳定性方面开始了对CHA的更广泛的稳定性,从而对CHA的稳定性进行了更广泛的研究,从而使CHA的效率更加重要,从而实现了效应的效果。或化学系统,包括随机培养基中的聚合物。培养基中应该有一系列的空间相关长度,这意味着行为的连续性,表现出比理论物理学家所预测的更丰富的现象。进一步进行建模,PI计划在那些长期记忆是经验事实的领域中分析该项目的实际后果,包括金融计量经济学,互联网流量和气候预测。博士学生将参与研究的基本方面。一些理论定量问题,例如小球常数,波动指数和长期内存参数估计,将与MS和本科生进行的数值模拟相辅相成。让学生与现实世界应用一起参与基础研究将广泛传播科学理解。PI将鼓励来自代表性不足的团体的学生加入该研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frederi Viens其他文献
Rotational complexity increases cropping system output under poorer growing conditions
- DOI:
10.1016/j.oneear.2024.07.008 - 发表时间:
2024-09-20 - 期刊:
- 影响因子:
- 作者:
K. Ann Bybee-Finley;Katherine Muller;Kathryn E. White;Michel A. Cavigelli;Eunjin Han;Harry H. Schomberg;Sieglinde Snapp;Frederi Viens;Adrian A. Correndo;Leonardo Deiss;Simon Fonteyne;Axel Garcia y Garcia;Amélie C.M. Gaudin;David C. Hooker;Ken Janovicek;Virginia Jin;Gregg Johnson;Heather Karsten;Matt Liebman;Marshall D. McDaniel - 通讯作者:
Marshall D. McDaniel
Optimal reinsurance and investment strategies for insurers with mispricing and model ambiguity
定价错误和模型模糊的保险公司的最佳再保险和投资策略
- DOI:
10.1016/j.insmatheco.2016.11.007 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ailing Gu;Frederi Viens;Bo Yi - 通讯作者:
Bo Yi
Frederi Viens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frederi Viens', 18)}}的其他基金
Applications of stochastic analysis to statistical inference for stationary and non-stationary Gaussian processes
随机分析在平稳和非平稳高斯过程统计推断中的应用
- 批准号:
2311306 - 财政年份:2023
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
Symposium on Mathematical Statistics and Applications: From Time Series and Stochastics, to Semi- and Non-Parametrics, to High-Dimensional Models
数理统计及应用研讨会:从时间序列和随机,到半参数和非参数,再到高维模型
- 批准号:
1833447 - 财政年份:2018
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
Topics in stochastic analysis and Malliavin calculus
随机分析和 Malliavin 微积分主题
- 批准号:
1734183 - 财政年份:2016
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
Topics in stochastic analysis and Malliavin calculus
随机分析和 Malliavin 微积分主题
- 批准号:
1407762 - 财政年份:2014
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
International Conference on Malliavin Calculus and Stochastic Analysis
Malliavin 微积分和随机分析国际会议
- 批准号:
1059957 - 财政年份:2010
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
International Conference on Stochastic Analysis and Applications: from Mathematical Physics to Mathematical Finance, June 13-15, 2008, Princeton University
国际随机分析与应用会议:从数学物理到数学金融,2008 年 6 月 13-15 日,普林斯顿大学
- 批准号:
0805745 - 财政年份:2008
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
AMC-SS: Stochastic analysis and random medium in continuous space and time
AMC-SS:连续空间和时间中的随机分析和随机介质
- 批准号:
0606615 - 财政年份:2006
- 资助金额:
$ 23.07万 - 项目类别:
Continuing Grant
Second Purdue Minisymposium on Financial Mathematics; April 15-16, 2005; West Lafayette, IN
第二届普渡大学金融数学小型研讨会;
- 批准号:
0512166 - 财政年份:2005
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
Stochastic PDEs: Interdependence of Local and Long-term Behaviors, and Representation
随机偏微分方程:局部和长期行为的相互依赖性以及表示
- 批准号:
0204999 - 财政年份:2002
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
International Research Fellow Awards Program: Behavior of Systems of Stochastic Partial Differential Equations
国际研究员奖励计划:随机偏微分方程系统的行为
- 批准号:
9600278 - 财政年份:1996
- 资助金额:
$ 23.07万 - 项目类别:
Fellowship Award
相似国自然基金
超高通量单细胞包含完整poly(A)尾巴全长转录组分析技术
- 批准号:32371357
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
青海血蜱碱性尾巴蛋白Qinghaienin选择性抑制内源性凝血途径的作用机制研究
- 批准号:82360406
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
PABPC1通过胞质聚腺苷酸化调节结肠癌OLFM4基因mRNApoly(A)-tail长度和翻译效率的分子机制研究
- 批准号:82203361
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
添加G碱基的PolyA混合尾巴VEGFA mRNA修饰hiPS来源心肌细胞治疗心梗的机制研究
- 批准号:82272178
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
PABPC1通过胞质聚腺苷酸化调节结肠癌OLFM4基因mRNApoly(A)-tail长度和翻译效率的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating FGF Signaling Dynamics in migrating cells
研究迁移细胞中的 FGF 信号动力学
- 批准号:
10679898 - 财政年份:2024
- 资助金额:
$ 23.07万 - 项目类别:
A Tale of No Tail: Sperm Flagella Loss in Mormyrids
无尾的故事:斑鸠鱼精子鞭毛的丧失
- 批准号:
2243230 - 财政年份:2023
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
Viral disruption of host transcriptome integrity
病毒破坏宿主转录组完整性
- 批准号:
10666992 - 财政年份:2023
- 资助金额:
$ 23.07万 - 项目类别:
Biophysical, Structural, and Cellular Dissection of COPI-Dependent Retrograde Trafficking Using a Coronavirus Toolkit
使用冠状病毒工具包对 COPI 依赖性逆行贩运进行生物物理、结构和细胞解剖
- 批准号:
10646999 - 财政年份:2023
- 资助金额:
$ 23.07万 - 项目类别:
Asymmetric Single-Chain MspA nanopores for electroosmotic stretching and sequencing proteins
用于电渗拉伸和蛋白质测序的不对称单链 MspA 纳米孔
- 批准号:
10646810 - 财政年份:2023
- 资助金额:
$ 23.07万 - 项目类别: