HCC: Medium: Sound Rendering for Physically Based Simulation
HCC:媒介:基于物理的模拟的声音渲染
基本信息
- 批准号:0905506
- 负责人:
- 金额:$ 119.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational physics can help us animate crashing rigid and deformable bodies, or fracturing solids, or splashing water, but the results are silent movies. Virtually no practical algorithms exist for synthesizing synchronized sounds automatically. Instead, sound recordings are edited manually for pre-produced animations or triggered automatically in interactive settings. The former is labor intensive and inflexible, while the latter produces awkward, repetitive results. This situation is a serious obstacle to building realistic, interactive simulations (whether for entertainment, training, or other applications), which require sound to be compelling,. In this research the PIs will begin filling this broad void by pursuing fundamental advances in computational methods while solving several particularly challenging sound rendering problems. The goal is to produce some of the first viable methods in this area, upon which many more can be built. Successful implementation of this program will fundamentally transform our relationship with our increasingly convincing simulated realities, because for the first time we will be able to hear them as well as see them. To these ends, the PIs will develop fundamental algorithms that address the problems of simulating the vibrations that cause sound and computing the sound field produced by those vibrations.1) Reduced-order vibration models. Simulating vibration in complex structures is expensive because of the need for both high model complexity and audio-rate temporal resolution. The PIs will develop dimensional model reduction methods to enable efficient sound rendering from complex, nonlinearly vibrating geometry, such as thin shells.2) All-frequency sound radiation. Realistic sound requires computing the radiated sound field from a vibrating surface over the very broad range of audible frequencies. But existing methods are either inaccurate for low frequencies or impractical for high frequencies. The PIs will develop hybrid algorithms based on a broad toolbox and discover which methods are most successful for which problems.Complementing the algorithmic work, the PIs will pursue solutions to a series of difficult, unsolved sound rendering problems that are of value in applications:a) Harmonic fluid sounds. Few sounds are as distinctive as pouring a glass of water or the babbling of a brook, yet no algorithms exist to compute these sounds automatically. The PIs will investigate practical algorithms for harmonic bubble-based sound radiation characteristic of splashing fluids.b) Multi-object sound. Sounds made by collections of objects in contact (think of a bin of LEGOs or a basket of blocks) involve close-proximity effects that are often ignored. The PIs will develop sound rendering methods to approximate multi-object contact sounds with object-object interactions.c) Fracture. Brittle fracture creates distinctive sounds during destructive processes like breakage of glass. The PIs will research the efficient generation and excitation of vibrating fragments, and multi-object sound radiation from vibrating debris.In all aspects of this research, the PIs will ensure that they are solving problems accurately by comparing every approximation to a reference solution, and they will also ensure they are solving the right problems by testing perceptual equivalence between approximate solutions, reference solutions, and recorded sounds.Broader Impacts: Successful implementation of this program will lead to practical innovations of immediate relevance to computer graphics, and applications of acoustic simulation. In the future, the methods developed in this project or their successors will completely transform how sound is computed in interactive virtual environments.
计算物理可以帮助我们使撞击刚性和可变形的身体或裂缝固体或溅水动画,但结果是无声电影。 几乎没有实用算法可以自动合成同步声音。 取而代之的是,为预先制作的动画手动编辑声音录音或在交互式设置中自动触发。 前者是劳动密集型和僵化的,而后者产生尴尬的重复结果。 这种情况是建立现实的,交互式模拟(无论是用于娱乐,培训还是其他应用程序)的严重障碍,这需要声音是引人注目的。 在这项研究中,PI将通过追求计算方法的基本进步,同时解决一些特别具有挑战性的声音渲染问题,从而开始填补这一广泛的空白。 目的是在该领域生产一些可行的方法,可以在此过程中构建更多方法。 该计划的成功实施将从根本上改变我们与日益说服的模拟现实的关系,因为这是我们第一次能够听到它们并看到它们。 在这些目的上,PI将开发基本算法,以解决模拟引起声音并计算这些振动产生的声场的振动的问题。1)减少阶振动模型。 由于需要高模型复杂性和音频速率时间分辨率,因此在复杂结构中模拟振动很昂贵。 PI将开发尺寸模型减少方法,以实现从复杂的,非线性振动的几何形状(例如薄壳)呈现有效的声音。2)全频声音辐射。 逼真的声音需要在非常宽的可听见频率上计算从振动表面辐射的声场。 但是,现有方法对于低频不准确,或者对于高频而言是不切实际的。 PI将基于广泛的工具箱开发混合算法,并发现哪些方法最成功。解决算法工作,PI将寻求解决一系列困难,尚未解决的声音渲染问题的解决方案,这些问题在应用中具有价值:a)谐波声音。 很少有声音像倒水或溪流的泡沫一样与众不同,但是没有算法可以自动计算这些声音。 PI将研究基于谐波气泡的声音辐射特征的实用算法。B)多对象声音。 通过接触中的物体集合(想想乐高积木或一篮子块)发出的声音涉及通常会忽略的近距离效应。 PI将开发声音渲染方法,以近似对象对象相互作用近似多对象触点声音。C)骨折。 脆性断裂在破坏性过程中产生独特的声音,例如破裂的玻璃。 PI将研究振动碎片的有效产生和激发,以及从振动碎屑中进行的多个目标声音辐射。在这项研究的各个方面,PI将确保他们通过将每个近似值与参考解决方案进行比较,并确保通过对该问题进行了对近似的影响,并确保对解决方案的实现,并确保对解决方案的影响,并确保对近似的解决方案进行验证,并确保解决方案的影响,并确保概述的解决方案:参考求解,参考求解,参考,参考,参考,参考,参考,参考,参考,参考。与计算机图形的直接相关性以及声学模拟的应用。 将来,该项目中开发的方法或其继任者将完全改变在交互式虚拟环境中计算声音的方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Doug James其他文献
Trajectories of Psychological Distress of Men Treated at Aboriginal Residential Rehabilitation Services for Alcohol and Drug Misuse
在原住民住宅康复服务中因酗酒和吸毒而接受治疗的男性心理困扰的轨迹
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:8
- 作者:
M. Chambers;Anthony Shakeshaft;Llewellyn Mills;Anton Clifford;James Conigrave;Doug James;Anh Dam Tran - 通讯作者:
Anh Dam Tran
Doug James的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Doug James', 18)}}的其他基金
CM/Collaborative Research: Simulation-based Software Tools for Automated Knitting
CM/协作研究:基于仿真的自动针织软件工具
- 批准号:
1644490 - 财政年份:2016
- 资助金额:
$ 119.38万 - 项目类别:
Standard Grant
CAREER: Precomputing Data-driven Deformable Systems for Multimodal Interactive Simulation
职业:预计算数据驱动的可变形系统以进行多模态交互仿真
- 批准号:
0652597 - 财政年份:2006
- 资助金额:
$ 119.38万 - 项目类别:
Continuing grant
CAREER: Precomputing Data-driven Deformable Systems for Multimodal Interactive Simulation
职业:预计算数据驱动的可变形系统以进行多模态交互仿真
- 批准号:
0347740 - 财政年份:2004
- 资助金额:
$ 119.38万 - 项目类别:
Continuing Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SHF: Medium: Language Support for Sound and Efficient Programmable Inference
SHF:中:对健全且高效的可编程推理的语言支持
- 批准号:
2311983 - 财政年份:2023
- 资助金额:
$ 119.38万 - 项目类别:
Continuing Grant
III: Medium: Spatial Sound Scene Description
III:媒介:空间声音场景描述
- 批准号:
1955357 - 财政年份:2020
- 资助金额:
$ 119.38万 - 项目类别:
Standard Grant
SHF: MEDIUM: Performant Sound Gradual Typing
SHF:中:高性能声音渐进打字
- 批准号:
1763922 - 财政年份:2018
- 资助金额:
$ 119.38万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Wearable Sound Sensing and Feedback Techniques for Persons who are Deaf or Hard of Hearing
CHS:媒介:合作研究:适用于聋哑人的可穿戴声音传感和反馈技术
- 批准号:
1763235 - 财政年份:2018
- 资助金额:
$ 119.38万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Wearable Sound Sensing and Feedback Techniques for Persons who are Deaf or Hard of Hearing
CHS:媒介:合作研究:适用于聋哑人的可穿戴声音传感和反馈技术
- 批准号:
1763219 - 财政年份:2018
- 资助金额:
$ 119.38万 - 项目类别:
Standard Grant