RI: Medium: Collaborative Research: Explicit Articulatory Models of Spoken Language, with Application to Automatic Speech Recognition
RI:媒介:协作研究:口语显式发音模型及其在自动语音识别中的应用
基本信息
- 批准号:0905341
- 负责人:
- 金额:$ 37.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Title: RI: Medium: Collaborative Research: Explicit Articulatory Models ofSpoken Language, with Application to Automatic SpeechRecognitionInstitution: Toyota Technological Institute at ChicagoAbstract Date: 05/22/09This award is funded under the American Recovery and Reinvestment Act of 2009(Public Law 111-5).One of the main challenges in automatic speech recognition is variability in speakingstyle, including speaking rate changes and coarticulation. Models of the articulators(such as the lips and tongue) can succinctly represent much of this variability. Mostprevious work on articulatory models has focused on the relationship between acousticsand articulation, but more significant improvements require models of the hiddenarticulatory state structure. This work has both a technological goal of improvingrecognition and a scientific goal of better understanding articulatory phenomena.The project considers larger model classes than previously studied. In particular, theproject develops graphical models, including dynamic Bayesian networks andconditional random fields, designed to take advantage of articulatory knowledge. A newframework for hybrid directed and undirected graphical models is being developed, inrecognition of the benefits of both directed and undirected models, and of bothgenerative and discriminative training. The project activities include major extension ofearlier articulatory models with context modeling, asynchrony structures, andspecialized training; development of factored conditional random field models ofarticulatory variables; and discriminative training to alleviate word confusability.The scientific goal addresses questions about the ways in which articulatory trajectoriesvary in different contexts. Existing databases are used, and initial work in manualarticulatory annotation is being extended. In addition, the project uses articulatorymodels to perform forced transcription of larger data sets, providing an additionalresource for the research community. Other broad impacts include new models andtechniques with applicability to other time-series modeling problems. Extending theapplicability of speech recognition will help it fulfill its promise of enabling more efficientstorage of and access to spoken information, and equalizing the technological playingfield for those with hearing or motor disabilities.NATIONAL SCIENCE FOUNDATIONProposal AbstractProposal:0905633 PI Name:Livescu, KarenPrinted from eJacket: 06/10/09 Page 1 of 1
提案标题:RI:媒介:协作研究:口语显式发音模型,并应用于自动语音识别机构:芝加哥丰田技术研究所摘要日期:2009 年 5 月 22 日该奖项由《2009 年美国复苏和再投资法案》(公法 111)资助-5).自动语音识别的主要挑战之一是说话风格的可变性,包括说话速率变化和协同发音。咬合器(例如嘴唇和舌头)的模型可以简洁地代表这种变化的大部分。以前关于发音模型的大多数工作都集中在声学和发音之间的关系上,但更重要的改进需要隐藏的发音状态结构的模型。这项工作既有提高识别能力的技术目标,也有更好地理解发音现象的科学目标。该项目考虑了比之前研究的更大的模型类。特别是,该项目开发了图形模型,包括动态贝叶斯网络和条件随机场,旨在利用发音知识。认识到有向模型和无向模型以及生成训练和判别训练的优点,正在开发混合有向和无向图形模型的新框架。项目活动包括通过上下文建模、异步结构和专业培训对早期发音模型进行重大扩展;关节变量因子条件随机场模型的开发;科学目标解决了不同语境下发音轨迹如何变化的问题。使用现有数据库,并且正在扩展手动发音注释的初始工作。此外,该项目使用发音模型对更大的数据集进行强制转录,为研究社区提供额外的资源。其他广泛的影响包括适用于其他时间序列建模问题的新模型和技术。扩展语音识别的适用性将有助于其实现其承诺,即更有效地存储和访问语音信息,并为听力或运动障碍人士提供平等的技术竞争环境。国家科学基金会提案摘要提案:0905633 PI 姓名:Livescu, Karen 印自 eJacket: 06/10/09 第 1 页,共 1 页
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Bilmes其他文献
Jeffrey Bilmes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Bilmes', 18)}}的其他基金
Collaborative Research: RI: Medium: Submodular Information Functions with Applications to Machine Learning
合作研究:RI:中:子模信息函数及其在机器学习中的应用
- 批准号:
2106389 - 财政年份:2021
- 资助金额:
$ 37.8万 - 项目类别:
Standard Grant
RI: Medium: Advances and Applications in Submodularity for Machine Learning
RI:媒介:机器学习子模块性的进展和应用
- 批准号:
1162606 - 财政年份:2012
- 资助金额:
$ 37.8万 - 项目类别:
Continuing Grant
CI-ADDO-EN: Software Infrastructure for Temporal Modeling
CI-ADDO-EN:用于时间建模的软件基础设施
- 批准号:
0855230 - 财政年份:2009
- 资助金额:
$ 37.8万 - 项目类别:
Continuing Grant
Intransitive Classification and Choice
不及物分类和选择
- 批准号:
0535100 - 财政年份:2005
- 资助金额:
$ 37.8万 - 项目类别:
Continuing Grant
Collaborative Research: Creating Dynamic Social Network Models from Sensor Data
协作研究:从传感器数据创建动态社交网络模型
- 批准号:
0433637 - 财政年份:2004
- 资助金额:
$ 37.8万 - 项目类别:
Standard Grant
ITR: The Vocal Joystick: Voice-based Assistive Technology for Individuals with Motor Impairments
ITR:声乐操纵杆:针对运动障碍人士的基于语音的辅助技术
- 批准号:
0326382 - 财政年份:2003
- 资助金额:
$ 37.8万 - 项目类别:
Continuing Grant
CAREER: A Graphical-Model Based Software Infrastructure for Speech Recognition Research and Education
职业:用于语音识别研究和教育的基于图形模型的软件基础设施
- 批准号:
0093430 - 财政年份:2001
- 资助金额:
$ 37.8万 - 项目类别:
Continuing Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 37.8万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 37.8万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 37.8万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 37.8万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 37.8万 - 项目类别:
Continuing Grant