Collaborative Research: Adaptive Allocation Rules in High-Dimensional Settings, with Applications
协作研究:高维设置中的自适应分配规则及其应用
基本信息
- 批准号:0855928
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2011-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this project is the study of problems in adaptive resource allocation, where the number of available actions is very large or infinite. In these problems, the decision maker chooses an action at each time step and observes some rewards, but the distribution of these rewards is initially unknown. Information is acquired during the decision making process. This introduces a tradeoff between choosing actions that appear most profitable given the available information, and choosing actions that result in additional information on unexplored possibilities. The research will formulate and study a new model, where the rewards of different actions are not independent of each other, but are determined by a small number of underlying random variables. By exploiting the correlation among the rewards, this research will develop policies that quickly identify the optimal action. The models and polices developed in this project will be applied to problems such as web advertising, price optimization, and supply chain management. If successful, the project will result in novel methodologies with immediate usefulness in many applications. The research will also establish the best possible regret and risk that can be attained in such models (as a function of time and of the number of underlying variables), by developing lower bounds on regret and policies that achieve (or nearly achieve) the lower bounds. In addition, the project will result in novel frameworks involving non-stationary environments, and establish a connection with classical problems in adaptive stochastic control. This work will provide a new perspective on some important classes of adaptive decision making problems, including some novel formulations and directions in this field.
该项目的研究目标是研究自适应资源分配问题,其中可用操作的数量非常大或无限。在这些问题中,决策者在每个时间步选择一个动作并观察一些奖励,但这些奖励的分布最初是未知的。信息是在决策过程中获取的。这就引入了一种权衡,选择在给定可用信息的情况下看起来最有利可图的行动,以及选择会产生有关未探索的可能性的附加信息的行动。该研究将制定和研究一种新的模型,其中不同行为的奖励不是相互独立的,而是由少量的底层随机变量决定的。通过利用奖励之间的相关性,这项研究将制定快速识别最佳行动的政策。该项目开发的模型和策略将应用于网络广告、价格优化和供应链管理等问题。如果成功,该项目将产生在许多应用中立即有用的新颖方法。该研究还将通过制定后悔的下限和实现(或接近实现)较低目标的政策,确定在此类模型中可以实现的最佳遗憾和风险(作为时间和基础变量数量的函数)。界限。此外,该项目将产生涉及非平稳环境的新颖框架,并与自适应随机控制中的经典问题建立联系。这项工作将为一些重要类别的自适应决策问题提供新的视角,包括该领域的一些新颖的表述和方向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paat Rusmevichientong其他文献
UCLA Recent Work Title The Assortment Packing Problem : Multiperiod Assortment Planning for Short-Lived Products Permalink
加州大学洛杉矶分校最近的工作标题分类包装问题:短期产品的多周期分类规划永久链接
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Felipe Caro;Víctor Martínez;Paat Rusmevichientong - 通讯作者:
Paat Rusmevichientong
Solitaire: Man Versus Machine
纸牌:人与机器
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
X. Yan;P. Diaconis;Paat Rusmevichientong;Benjamin Van Roy - 通讯作者:
Benjamin Van Roy
Technical Note : A Simple Greedy Algorithm for Assortment Optimization in the Two-Level Nested Logit Model
技术说明:两级嵌套 Logit 模型中分类优化的简单贪婪算法
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Guang Li;Paat Rusmevichientong - 通讯作者:
Paat Rusmevichientong
Decentralized decision-making in a large team with local information
大型团队利用本地信息进行分散决策
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Paat Rusmevichientong;Benjamin Van Roy - 通讯作者:
Benjamin Van Roy
Revenue Management Under a Mixture of Independent Demand and Multinomial Logit Models
独立需求与多项 Logit 模型混合下的收入管理
- DOI:
10.1287/opre.2022.2333 - 发表时间:
2022 - 期刊:
- 影响因子:2.7
- 作者:
Yufeng Cao;Paat Rusmevichientong;Huseyin Topaloglu - 通讯作者:
Huseyin Topaloglu
Paat Rusmevichientong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paat Rusmevichientong', 18)}}的其他基金
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
- 批准号:
2226901 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Performance Guarantees for Approximate Dynamic Programming Approaches to Pricing and Capacity Management
协作研究:定价和容量管理的近似动态规划方法的性能保证
- 批准号:
1824860 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Complex Choice Behavior into Assortment, Inventory, and Pricing Decisions
协作研究:将复杂的选择行为整合到分类、库存和定价决策中
- 批准号:
1433396 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Effective Management of Smart Grids and Smart Meters for Creating a Sustainable Energy Future
合作研究:有效管理智能电网和智能电表,创造可持续能源未来
- 批准号:
1157569 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Real-Time Stochastic Optimization with Large Structured Strategy Sets and High-Volume Data Streams
职业:具有大型结构化策略集和大容量数据流的实时随机优化
- 批准号:
1158659 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Adaptive Allocation Rules in High-Dimensional Settings, with Applications
协作研究:高维设置中的自适应分配规则及其应用
- 批准号:
1158658 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Effective Management of Smart Grids and Smart Meters for Creating a Sustainable Energy Future
合作研究:有效管理智能电网和智能电表,创造可持续能源未来
- 批准号:
1068075 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Real-Time Stochastic Optimization with Large Structured Strategy Sets and High-Volume Data Streams
职业:具有大型结构化策略集和大容量数据流的实时随机优化
- 批准号:
0746844 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
- 批准号:
0732196 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
面向开放环境的无人潜航器集群自适应协作控制方法研究
- 批准号:62306211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针对动态状态约束的人机协作系统自适应最优控制方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
受生物启发的多水下机器人环境自适应集群协作控制方法及实验研究
- 批准号:61973007
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
弱时间同步下自适应拓扑变化的移动水声网络高精度自定位方法研究
- 批准号:61901057
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于分布协作式移动边缘计算的VR视频自适应传输优化研究
- 批准号:61901250
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316615 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant