FRG: Collaborative Research: Characters, Liftings, and Types: Investigations in p-adic Representation Theory

FRG:协作研究:特征、提升和类型:p-adic 表示理论的调查

基本信息

项目摘要

The local Langlands conjectures can be viewed as offering two important kinds of connections---first, between the same matrix group, taken with coefficients in two different fields; and second, between two different matrix groups, taken with coefficients in the same field. The conjectures offer an explanation for why the representation theories of real and p-adic, and even of adelic, groups are so similar. The price of this uniformity is that, often, one may no longer speak of individual representations, but rather of finite collections of them (called L-packets). These are expected to encode both number-theoretic (via Galois groups) and algebro-geometric (via many avenues---for example, the theory of stable distributions) information. For some families of representations, the investigators already have clear expectations for what the L-packets should be, but they cannot yet prove that their expectations are correct. For other families, there is not even a reasonable conjecture for what the answer should be. The theory of real groups suggests yet another rewarding perspective, from the point of view of symmetric spaces. For p-adic groups, the serious study of harmonic analysis on such spaces is just beginning to be developed, in large part by the investigators, and the analogues in this setting of the local Langlands conjectures are far from clear. The part of the local Langlands conjectures dealing with functoriality also suggests that the investigators should be able to transfer representation-theoretic information between different matrix groups. A classical realization of this is the theory of lifting, where representations of matrix groups over a large field are related to those of the same group, but with coefficients taken in a smaller field. Most progress in this area has been via somewhat ad hoc methods, but the answers have invariably turned out to be related to natural constructions arising in the symmetric-space setting.Representation theory, broadly understood, has its origins in two classical problems. The first, investigated by Fourier in the 19th century, was an attempt to understand complicated physical processes, such as heat diffusion, by representing them as combinations of simpler processes. The second, initially studied by Frobenius, Schur, and others, was an attempt to understand the structure of a finite collection of symmetries via an associated polynomial known as its group determinant. The surprising fact that the solutions to these two problems are related has turned out to be just the earliest instance of a family of deep and far-reaching connections that have been formalized in a collection of conjectures known collectively as the (local) Langlands conjectures. The depth and broad reach of these conjectures---for example, they encompass a large part of the celebrated recent proof of the centuries-old Fermat's Last Theorem---has meant that progress has so far been relatively slow. This project brings together a group of mathematicians from a broad variety of related backgrounds, whose combined expertise can be expected to allow significant progress both on these conjectures and on related results in representation theory and harmonic analysis.
局部朗兰兹猜想可以被视为提供了两种重要的联系——第一,在同一矩阵群之间,采用两个不同域中的系数;其次,在两个不同的矩阵组之间,采用同一域中的系数。 这些猜想解释了为什么实群和 p-adic 群,甚至 adel 群的表示论如此相似。 这种一致性的代价是,人们通常可能不再谈论个体表示,而是谈论它们的有限集合(称为 L 包)。 这些预计将编码数论(通过伽罗瓦群)和代数几何(通过许多途径——例如稳定分布理论)信息。 对于一些表征家族,调查人员已经对 L 数据包应该是什么有了明确的期望,但他们还不能证明他们的期望是正确的。 对于其他家庭来说,答案应该是什么甚至都没有合理的猜想。 从对称空间的角度来看,实群理论提出了另一种有益的观点。 对于 p 进群,对此类空间的调和分析的认真研究才刚刚开始发展,这在很大程度上是由研究者进行的,并且在这种情况下局部朗兰兹猜想的类似物还远不清楚。 局部朗兰兹猜想中涉及函子性的部分也表明研究者应该能够在不同的矩阵组之间传递表示理论信息。 对此的一个经典实现是提升理论,其中大域上的矩阵组的表示与同一组的表示相关,但系数是在较小的域中获取的。 这一领域的大多数进展都是通过某种临时方法实现的,但答案总是与对称空间环境中出现的自然结构有关。广义上讲,表示论起源于两个经典问题。第一个是由傅里叶在 19 世纪研究的,试图通过将复杂的物理过程(例如热扩散)表示为更简单过程的组合来理解它们。 第二个最初由 Frobenius、Schur 和其他人研究,试图通过称为群行列式的相关多项式来理解有限对称集合的结构。 令人惊讶的事实是,这两个问题的解决方案是相关的,这只是一系列深刻而深远的联系的最早实例,这些联系已在统称为(局部)朗兰兹猜想的一系列猜想中形式化。这些猜想的深度和广泛性——例如,它们包含了数百年历史的费马大定理最近著名的证明的很大一部分——意味着迄今为止的进展相对缓慢。 该项目汇集了一群来自各种相关背景的数学家,他们的综合专业知识预计将在这些猜想以及表示论和调和分析的相关结果方面取得重大进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen DeBacker其他文献

Stephen DeBacker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen DeBacker', 18)}}的其他基金

Midwest Representation Theory Conference 2021/2022
2021/2022 中西部表征理论会议
  • 批准号:
    2137037
  • 财政年份:
    2022
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
Topics in Harmonic Analysis on Reductive p-adic Groups
约简 p 进群调和分析专题
  • 批准号:
    0500667
  • 财政年份:
    2005
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
Topics in Harmonic Analysis for Reductive P-adic Groups
还原 P 进群的调和分析主题
  • 批准号:
    0345121
  • 财政年份:
    2003
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Continuing Grant
Topics in Harmonic Analysis for Reductive P-adic Groups
还原 P 进群的调和分析主题
  • 批准号:
    0200542
  • 财政年份:
    2002
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9804375
  • 财政年份:
    1998
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Fellowship Award

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了