Analysis of Predictability of Convective Initiation and Morphological Evolution Using Near-Cloud Permitting Grid Spacing Models
使用近云允许网格间距模型分析对流起始和形态演化的可预测性
基本信息
- 批准号:0848200
- 负责人:
- 金额:$ 45.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Accurate computer-based numerical simulations of the initiation and morphological evolution of mesoscale convective systems (MCSs), which embody lines and/or clusters of thunderstorms and attendant lighter precipitation accounting for the bulk of growing-season rainfall over the midwestern U.S., are important for forecasts of both quantitative precipitation amounts and severe weather risks. Increased computational speed has allowed operational model grid-mesh spacing to extend to scales capable of resolving individual cloud features within these storm systems. Even so, the initiation of these clouds occurs on spatial scales so small (and is moreover sufficiently dependant on imperfectly-measured initial atmospheric conditions at these fine scales) as to defy proper representation in these models. Subsequent modeled evolution of the intensity and horizontal patterning of larger mature thunderstorm elements may be inaccurately portrayed for similar reasons, and is further impacted by deficiencies in cloud microphysical schemes that in-turn influence simulated cold pools/gust fronts and resultant low-level cloud forcing.This study will exploit an extensive archive of observed and simulated MCS events, including observations from the IHOP and BAMEX field experiments and NOAA Hazardous Weather Testbed project, to accomplish three primary objectives: (1) Complete detailed analyses of archived simulations and corresponding observations of convective initiation and MCS evolution to identify key processes controlling these attributes; (2) perform systematic tests to determine sensitivity of such simulations to both representations of cloud microphysical processes and novel parameterization methods appropriate to fine-mesh scales characteristic of state-of-the-art atmospheric models; and (3) develop methods for improved QPF (Quantitative Precipitation Forecast) guidance making use of entity-based verification techniques and ensembles of numerical simulations. The intellectual merit of this research rests in achieving a fuller and more accurate understanding of numerical simulation dependencies on complex relationships between model resolution and those specific parameterization schemes being employed, which in some cases trace back to far-coarser models developed a decade or more ago. Broader impacts will emerge through support of the education of several graduate students, through inclusion of emerging research themes in classroom and student project-oriented undergraduate studies, via interactions with National Weather Service forecasters and public media interviews, and through contributions to improved methodologies for forecasts of quantitative precipitation amounts/timing and severe weather impacting the public.
该奖项根据 2009 年美国复苏和再投资法案(公法 111-5)提供资金。对中尺度对流系统 (MCS) 的启动和形态演化进行精确的计算机数值模拟,其中中尺度对流系统体现了雷暴线和/或雷暴簇以及随之而来的降雨量减少,占美国中西部生长季降雨量的大部分,对于定量降水量和恶劣天气风险的预测非常重要。 计算速度的提高使得操作模型网格间距能够扩展到能够解析这些风暴系统内的单个云特征的规模。即便如此,这些云的形成发生在如此小的空间尺度上(而且充分依赖于在这些精细尺度上不完全测量的初始大气条件),以至于无法在这些模型中正确表示。 由于类似的原因,较大的成熟雷暴元素的强度和水平模式的后续模拟演化可能会被不准确地描述,并进一步受到云微物理方案缺陷的影响,进而影响模拟冷池/阵风锋和由此产生的低层云强迫这项研究将利用大量观测和模拟 MCS 事件档案,包括 IHOP 和 BAMEX 现场实验以及 NOAA 危险天气试验台项目的观测,以实现三个主要目标: (1) 完成对已存档的模拟以及对流起始和 MCS 演化的相应观测的详细分析,以确定控制这些属性的关键过程; (2) 进行系统测试,以确定此类模拟对云微物理过程表示和适合最先进大气模型的细网格尺度特征的新颖参数化方法的敏感性; (3) 利用基于实体的验证技术和数值模拟集合,开发改进 QPF(定量降水预报)指导的方法。这项研究的智力价值在于更全面、更准确地理解数值模拟对模型分辨率和所采用的特定参数化方案之间复杂关系的依赖关系,在某些情况下,这些模型可以追溯到十年或更早开发的更粗略的模型。 通过支持几名研究生的教育,通过将新兴研究主题纳入课堂和以学生项目为导向的本科学习,通过与国家气象局预报员的互动和公共媒体采访,以及通过为改进预报方法做出贡献,将产生更广泛的影响定量降水量/时间和影响公众的恶劣天气。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Gallus其他文献
William Gallus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Gallus', 18)}}的其他基金
Improved understanding of bow echo evolution and long-lasting significantly severe thunderstorm winds
更好地了解弓形回波演变和持久的强雷暴风
- 批准号:
2350205 - 财政年份:2024
- 资助金额:
$ 45.59万 - 项目类别:
Standard Grant
Enhancing the Understanding of Nocturnal Convective System Morphological Evolution
增强对夜间对流系统形态演化的认识
- 批准号:
2022888 - 财政年份:2020
- 资助金额:
$ 45.59万 - 项目类别:
Standard Grant
Improved Understanding of Nocturnal Mesoscale Convective System Evolution
提高对夜间中尺度对流系统演化的认识
- 批准号:
1624947 - 财政年份:2016
- 资助金额:
$ 45.59万 - 项目类别:
Standard Grant
Understanding the Predictability of Initiation and Morphological Evolution of PECAN (Plains Elevated Convection at Night) Nocturnal Mesoscale Convective Systems
了解 PECAN(夜间平原高对流)夜间中尺度对流系统的起始和形态演化的可预测性
- 批准号:
1359606 - 财政年份:2014
- 资助金额:
$ 45.59万 - 项目类别:
Standard Grant
Continued Analysis of Convective System Evolution Using Convection-permitting Grid Spacing Weather Research and Forecasting (WRF) Simulations
使用允许对流网格间距天气研究和预报 (WRF) 模拟继续分析对流系统演化
- 批准号:
1222383 - 财政年份:2012
- 资助金额:
$ 45.59万 - 项目类别:
Continuing Grant
Development of cutting-edge geoscience virtual reality applications for classroom instruction and pedagogical evaluation of the impact on learning of VR technology
开发用于课堂教学的尖端地球科学虚拟现实应用程序以及 VR 技术对学习影响的教学评估
- 批准号:
0618686 - 财政年份:2006
- 资助金额:
$ 45.59万 - 项目类别:
Standard Grant
Evaluating Predictability of Mesoscale Circulations, Morphologies, and Rainfall Evolution for Warm Season Convective Systems
评估暖季对流系统中尺度环流、形态和降雨演化的可预测性
- 批准号:
0537043 - 财政年份:2006
- 资助金额:
$ 45.59万 - 项目类别:
Standard Grant
A virtual tornadic thunderstorm to enable student-centered learning about complex storm-scale atmospheric dynamics
虚拟龙卷风雷暴使学生能够学习复杂的风暴规模大气动力学
- 批准号:
0127465 - 财政年份:2002
- 资助金额:
$ 45.59万 - 项目类别:
Standard Grant
Evaluation of Mesoscale Convective System Rainfall Predictability in the Upper Midwest Considering System Morphology
考虑系统形态的中西部上部中尺度对流系统降雨可预测性评估
- 批准号:
0226059 - 财政年份:2002
- 资助金额:
$ 45.59万 - 项目类别:
Continuing Grant
Relay Node Computer Upgrade and Servers for Archived Weather Data
中继节点计算机升级和存档天气数据服务器
- 批准号:
9815314 - 财政年份:1999
- 资助金额:
$ 45.59万 - 项目类别:
Standard Grant
相似国自然基金
大西洋经向翻转环流的年代际可预测性及其对全球变暖的响应
- 批准号:42376198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
“不流动”的日常实践与身份“邂逅”——公众旅游抵制行为的规律性和可预测性研究
- 批准号:42301260
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
北大西洋年代际海温型交替转换对东亚夏季降水的影响和可预测性研究
- 批准号:42375025
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
印度洋海洋热浪:预测模型的建立及可预测性研究
- 批准号:42306030
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国公募基金投资行为可预测性研究:基于机器学习的视角
- 批准号:72371191
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
PREEVENTS Track 2: Collaborative Research: Multi-scale processes impacting the predictability of severe convective weather events
预防事件轨道 2:协作研究:影响强对流天气事件可预测性的多尺度过程
- 批准号:
1854886 - 财政年份:2019
- 资助金额:
$ 45.59万 - 项目类别:
Continuing Grant
PREEVENTS Track 2: Collaborative Research: Multi-scale processes impacting the predictability of severe convective weather events
预防事件轨道 2:协作研究:影响强对流天气事件可预测性的多尺度过程
- 批准号:
1854966 - 财政年份:2019
- 资助金额:
$ 45.59万 - 项目类别:
Continuing Grant
Lake-effect Snow: Understanding Predictability and Dynamics through Ensemble-Based Convective-Permitting Data Assimilation, Modeling, and Sensitivity Analysis
湖泊效应雪:通过基于集合的对流允许数据同化、建模和敏感性分析来了解可预测性和动力学
- 批准号:
1745243 - 财政年份:2018
- 资助金额:
$ 45.59万 - 项目类别:
Standard Grant
Lake-effect Snow: Understanding Predictability and Dynamics through Ensemble-Based Convective-Permitting Data Assimilation, Modeling, and Sensitivity Analysis
湖泊效应雪:通过基于集合的对流允许数据同化、建模和敏感性分析来了解可预测性和动力学
- 批准号:
1745243 - 财政年份:2018
- 资助金额:
$ 45.59万 - 项目类别:
Standard Grant
Collaborative Research: Improved Understanding of Convective-Storm Predictability and Environment Feedbacks from Observations during the Mesoscale Predictability Experiment (MPEX)
合作研究:提高对中尺度可预测性实验(MPEX)期间观测的对流风暴可预测性和环境反馈的理解
- 批准号:
1542312 - 财政年份:2014
- 资助金额:
$ 45.59万 - 项目类别:
Continuing Grant