CAREER: Broadband Microwave and THz Investigations of Correlated Electron and Nanostructure Systems
职业:相关电子和纳米结构系统的宽带微波和太赫兹研究
基本信息
- 批准号:0847652
- 负责人:
- 金额:$ 52.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-03-01 至 2014-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL ABSTRACTThe response of condensed matter to electromagnetic radiation is a fundamental probe of its electronic structure. Correlated systems and their nanostructures like quantum magnets, high-Tc superconductors, 2D electron gasses, graphene and others exhibit a multitude of novel properties as a result of strong electron-electron interactions, reduced dimensionality, and interfacial effects. Unfortunately, many of their natural time scales lie in the GHz and THz region of the electromagnetic spectrum that has been difficult to access in a broadband manner. The upper part of this range has even become known as the `Terahertz Gap', which is a range of frequencies (roughly 0.05 to 10 THz) and energy scales above what is easily accessible with radio-frequency and microwave electronics, but below that accessible easily with conventional optics. Recently, however, there have been a series of dramatic breakthroughs in broadband microwave GHz range and time-domain THz spectroscopy that allow measurements which were simply not possible previously. This proposal for research at The Johns Hopkins University is aimed at the exploitation of these recent dramatic advances in GHz and THz range spectroscopic techniques for the investigation of exotic electronic states of matter at low temperatures. The systems to be investigated include novel dielectrics, electronic glasses, nanostructures such as interfacial metal heterostructures and graphene, and materials in proximity to quantum (T=0) phase transitions. These systems are of central importance for intellectual issues at the forefront of condensed matter physics and their exploration in the GHz and THz spectral range offers great scientific opportunity. The proposed work is of particular educational value to students owing to the material science and low frequency electrodynamics techniques that will be employed and which are finding broad application in research and private industry. In this regards, specific teaching laboratories will be developed. Public outreach activities in the form of the Johns Hopkins Physics Fair will also be realized.NON-TECHNICAL ABSTRACT: It is hardly an exaggeration that most of what we know about physical systems comes from their response to perturbations at their characteristic frequencies. For instance, the fundamental tone of a plucked violin string depends on the length of the string, the tension in it, and its thickness. This is true from the acoustics of a violin to the energies of atoms. Unfortunately the natural frequency scales of many solid materials fall in a range which has been prohibitively difficult to access technically until recently. This project takes advantage of recent dramatic technical advances in THz and microwave spectroscopy to characterize the natural frequency scales of solids. Material systems like superconductors, which can conduct electricity without resistance and various magnetic states will be studied. The investigations performed herein will give absolutely essential information to develop new materials with important technological implications. These technological developments are coupled to a broad initiative in education and outreach. The proposed work is of particular educational value to students owing to the material science and low frequency electrodynamics techniques that will be employed and which are finding broad application in research and private industry. Specific teaching laboratories will be developed. Public outreach activities in the form of the Johns Hopkins Physics Fair will also be realized.
技术摘要凝结物对电磁辐射的响应是其电子结构的基本探测。 相关系统及其纳米结构,例如量子磁铁,高-TC超导体,2D电子气体,石墨烯等,由于强烈的电子电子相互作用,尺寸降低和界面效应,因此具有多种新型特性。 不幸的是,它们的许多自然时间尺度位于电磁频谱的GHz和THZ区域,这很难以宽带方式进入。该范围的上部甚至被称为“ Terahertz Gap”,它是一系列频率(大约0.05至10 THz),并且能量尺度以上是可轻松访问的射频和微波电子设备,但是在下面可以轻松访问常规光学器件。然而,最近,在宽带微波GHz范围和时间域THZ光谱法中,已经进行了一系列戏剧性的突破,这些范围允许以前根本无法进行测量。约翰·霍普金斯大学(Johns Hopkins University)的这项研究提案旨在剥削GHz和THZ范围光谱技术最近的这些急剧进步,以调查低温下物质的外来电子状态。要研究的系统包括新型电介质,电子玻璃,纳米结构,例如界面金属异质结构和石墨烯,以及与量子(t = 0)相变的材料。这些系统对于在凝结物理学的最前沿的智力问题及其在GHz和THZ光谱范围的探索方面至关重要。 由于材料科学和低频电动动力学技术,这些工作对学生具有特别的教育价值,这些技术将被采用,并且在研究和私营企业中发现了广泛的应用。 在这方面,将开发特定的教学实验室。 以约翰·霍普金斯物理博览会的形式进行公共宣传活动也将被实现。没有技术摘要:我们对物理系统所知道的大多数人对它们的特征频率的反应并不是夸张的。 例如,拔出小提琴弦的基本音调取决于弦的长度,其中的张力和其厚度。 从小提琴的声学到原子的能量,这是正确的。 不幸的是,许多固体材料的固有频率尺度属于该范围,直到最近才能在技术上很难获得。该项目利用了最近在THZ和微波光谱方面的巨大技术进步来表征固体的固有频率尺度。将研究可以在没有阻力和各种磁性状态的无电力的超导体等材料系统中进行研究。 本文进行的调查将提供绝对重要的信息,以开发具有重要技术意义的新材料。 这些技术发展与教育和宣传方面的广泛倡议相结合。由于材料科学和低频电动动力学技术,这些工作对学生具有特别的教育价值,这些技术将被采用,并且在研究和私营企业中发现了广泛的应用。将开发特定的教学实验室。也将实现以约翰·霍普金斯物理博览会形式的公共外展活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Norman Armitage其他文献
Norman Armitage的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Norman Armitage', 18)}}的其他基金
Novel measures of thermalization and time-evolution of strongly correlated, disordered, and topological systems by nonlinear THz spectroscopy
通过非线性太赫兹光谱测量强相关、无序和拓扑系统的热化和时间演化的新方法
- 批准号:
2226666 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
WORKSHOP: The Future of the Correlated Electron Problem Workshop
研讨会:相关电子问题研讨会的未来
- 批准号:
2002329 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
MRI: Acquisition of Magnetic Property Measurement System
MRI:磁性能测量系统的采集
- 批准号:
1828490 - 财政年份:2019
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Non-linear THz optical effects as a probe of Berry's phase in topological materials
非线性太赫兹光学效应作为拓扑材料中贝里相的探针
- 批准号:
1905519 - 财政年份:2019
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Low energy electrodynamics of strongly interacting disordered systems: quantum phase transitions and many-body localization
强相互作用无序系统的低能电动力学:量子相变和多体局域化
- 批准号:
1508645 - 财政年份:2015
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Correlated Electron Systems: Textures, Topology, and Strong Interactions, June 22-27, 2014
相关电子系统:纹理、拓扑和强相互作用,2014 年 6 月 22-27 日
- 批准号:
1444637 - 财政年份:2014
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
International Research Fellowship Program: Infrared and Optical Studies of Quantum Phase Transitions
国际研究奖学金计划:量子相变的红外和光学研究
- 批准号:
0402699 - 财政年份:2004
- 资助金额:
$ 52.5万 - 项目类别:
Fellowship Award
相似国自然基金
后端平衡阻抗下宽带微波吸波结构的兼容性设计与场调控机理研究
- 批准号:62301227
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等离子体超宽带微波辐射源的环形阴极放电及长脉冲电子束形成机理研究
- 批准号:52377163
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
片上集成微波光子宽带正交混频技术研究
- 批准号:62305011
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于光域正交基分解的微波光子宽带矢量信号最佳接收方法研究
- 批准号:62305266
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
宽带低噪声串联SQUID阵列微波放大器关键技术研究
- 批准号:12273099
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
相似海外基金
Silicon photonics: enabling optical and microwave signal processing for broadband communications beyond the next decade
硅光子学:为未来十年的宽带通信提供光学和微波信号处理
- 批准号:
RGPIN-2015-04386 - 财政年份:2022
- 资助金额:
$ 52.5万 - 项目类别:
Discovery Grants Program - Individual
Broadband Gallium Nitride Power Amplifier for Microwave Calibration Instrumentation
用于微波校准仪器的宽带氮化镓功率放大器
- 批准号:
549245-2019 - 财政年份:2022
- 资助金额:
$ 52.5万 - 项目类别:
Alliance Grants
Silicon photonics: enabling optical and microwave signal processing for broadband communications beyond the next decade
硅光子学:为未来十年的宽带通信提供光学和微波信号处理
- 批准号:
RGPIN-2015-04386 - 财政年份:2021
- 资助金额:
$ 52.5万 - 项目类别:
Discovery Grants Program - Individual
Broadband Gallium Nitride Power Amplifier for Microwave Calibration Instrumentation
用于微波校准仪器的宽带氮化镓功率放大器
- 批准号:
549245-2019 - 财政年份:2021
- 资助金额:
$ 52.5万 - 项目类别:
Alliance Grants
A High Power, Broadband 395 GHz Gyrotron Amplifier for DNP-NMR and EPR Spectroscopy
用于 DNP-NMR 和 EPR 光谱分析的高功率宽带 395 GHz 回旋放大器
- 批准号:
10010144 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别: