CAREER: Advanced Computational Multi-Body Dynamics for Next Generation Simulation-Based Engineering
职业:下一代基于仿真的工程的高级计算多体动力学
基本信息
- 批准号:0840442
- 负责人:
- 金额:$ 40.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-03-01 至 2014-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the computer microprocessor industry rallies behind a new design paradigm that emphasizes massively parallel architectures, today?s Computational Multi-Body Dynamics methods are gradually becoming obsolete and ill-positioned to answer the ever growing challenges posed by Simulation-Based Engineering. This Career proposal is motivated by the opportunity to reshape the existing Computational Multi-Body Dynamics landscape through new simulation methods. Specifically, the developed methods will tackle complex dynamics applications from new algorithmic perspectives that draw on affordable high performance parallel computing hardware.From the motion of atoms to the flow of granular material (sand, gravel, etc.) and on to predicting/understanding/optimizing the dynamics of heavy duty machinery such as a 1,500 ton electric excavator, three efficiency barriers that currently limit the potential of Simulation-Based Engineering are identified as follows: (i) numerical solution methods are rooted in sequential algorithms, (ii) numerical methods do not scale to handle very large systems efficiently, and (iii) numerical integration methods are limited to very small integration step-sizes. Under this research, advanced numerical methods leveraging emerging massively parallel commodity computer hardware will be identified, investigated, and demonstrated to effectively overcome these efficiency barriers. Specifically, (a) relying on explicit numerical integration, an iterative solution framework will be investigated for its potential for parallel simulation, (b) drawing on a differential variational inequality approach, scalable complementarity methods will be investigated for their potential to use tens of thousands of parallel computational threads to solve billion body dynamics problems with frictional contact, and (c) relying on implicit numerical formulas, symplectic methods will be investigated for their potential for larger integration step-sizes in Molecular Dynamics simulation.If it is a domain decomposition technique, a multigrid methodology, or a new variational implicit integrator, the approaches investigated under this project ultimately draw on Applied Mathematics and leverage emerging trends in Computer Science to advance/accelerate discovery in Engineering. In specific economic terms, this research effort will (1) translate into immediate productivity gains in Simulation-Based Engineering as a result of existing technology transfer arrangements with several federal government and industry partners, and (2) assist NASA researchers with simulation technology required to design the next generation of Lunar and Mars rovers. In educational/outreach terms, this effort will (3) increase minority enrollment in the College of Engineering at the University of Wisconsin through an ongoing annual summer Science, Technology, Engineering, and Mathematics (STEM) program with clearly stated goals and success metrics, (4) promote a graduate/undergraduate Mechanical Engineering educational track at Wisconsin that emphasizes Applied Mathematics and Computer Science as fundamental building blocks in the technical formation of new Engineers, and (5) increase public awareness of the Computational Multi-Body Dynamics topic in particular and the potential of Applied Mathematics and Computer Science disciplines in general.
随着计算机微处理器行业团结起来,支持强调大规模并行架构的新设计范式,当今的计算多体动力学方法逐渐过时,并且无法应对基于仿真的工程所带来的日益增长的挑战。 该职业提案的动机是有机会通过新的模拟方法重塑现有的计算多体动力学景观。 具体来说,所开发的方法将从新的算法角度解决复杂的动力学应用,这些算法利用经济实惠的高性能并行计算硬件。从原子的运动到颗粒材料(沙子、砾石等)的流动,再到预测/理解/在优化 1,500 吨电动挖掘机等重型机械的动力学过程中,目前限制基于仿真的工程潜力的三个效率障碍如下:(i) 数值求解方法植根于顺序算法,(ii) 数值求解方法方法无法扩展以有效地处理非常大的系统,并且(iii)数值积分方法仅限于非常小的积分步长。 在这项研究中,将识别、研究和演示利用新兴的大规模并行商品计算机硬件的先进数值方法,以有效克服这些效率障碍。 具体来说,(a)依靠显式数值积分,将研究迭代解决方案框架的并行模拟潜力,(b)利用微分变分不等式方法,将研究可扩展互补方法的使用数以万计的潜力并行计算线程来解决十亿个具有摩擦接触的物体动力学问题,并且(c)依靠隐式数值公式,将研究辛方法在分子动力学模拟中更大积分步长的潜力。如果它是域分解技术,多重网格方法或新的变分隐式积分器,该项目研究的方法最终利用应用数学并利用计算机科学的新兴趋势来推进/加速工程领域的发现。 从具体的经济角度来看,这项研究工作将(1)通过与多个联邦政府和行业合作伙伴的现有技术转让安排,立即转化为基于仿真的工程生产力的提高,以及(2)帮助 NASA 研究人员获得以下方面所需的仿真技术:设计下一代月球和火星探测器。 在教育/推广方面,这项努力将 (3) 通过持续进行的年度夏季科学、技术、工程和数学 (STEM) 计划增加威斯康星大学工程学院的少数族裔入学率,该计划具有明确的目标和成功指标, (4) 在威斯康星州推广研究生/本科机械工程教育课程,强调应用数学和计算机科学作为新工程师技术形成的基本组成部分,以及 (5) 提高公众对计算多体的认识特别是动力学主题以及应用数学和计算机科学学科的一般潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Negrut其他文献
Dan Negrut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Negrut', 18)}}的其他基金
Collaborative Research: Frameworks: Simulating Autonomous Agents and the Human-Autonomous Agent Interaction
协作研究:框架:模拟自主代理和人机交互
- 批准号:
2209791 - 财政年份:2022
- 资助金额:
$ 40.89万 - 项目类别:
Standard Grant
Collaborative Research: Differentiable and Expressive Simulators for Designing AI-enabled Robots
协作研究:用于设计人工智能机器人的可微分和富有表现力的模拟器
- 批准号:
2153855 - 财政年份:2022
- 资助金额:
$ 40.89万 - 项目类别:
Standard Grant
Collaborative Research: Elements:Software:NSCI: Chrono - An Open-Source Simulation Platform for Computational Dynamics Problems
合作研究:Elements:Software:NSCI: Chrono - 计算动力学问题的开源仿真平台
- 批准号:
1835674 - 财政年份:2019
- 资助金额:
$ 40.89万 - 项目类别:
Standard Grant
Towards Modeling & Simulation-Enabled Design of Intelligent Robots A Meeting Dedicated to Identifying Opportunities, Summarizing Challenges, and Brainstorming for Impactful Di
迈向建模
- 批准号:
1830129 - 财政年份:2018
- 资助金额:
$ 40.89万 - 项目类别:
Standard Grant
Using Mixed Discrete-Continuum Representations to Characterize the Dynamics of Large Many-Body Dynamics Problems
使用混合离散连续体表示来表征大型多体动力学问题的动力学
- 批准号:
1635004 - 财政年份:2016
- 资助金额:
$ 40.89万 - 项目类别:
Standard Grant
GOALI: Computational Multibody Dynamics: Addressing Modeling and Simulation Limitations in Problems with Friction and Contact
GOALI:计算多体动力学:解决摩擦和接触问题中的建模和仿真限制
- 批准号:
1362583 - 财政年份:2014
- 资助金额:
$ 40.89万 - 项目类别:
Standard Grant
SI2-SSE Collaborative Research: SPIKE-An Implementation of a Recursive Divide-and-Conquer Parallel Strategy for Solving Large Systems of Linear Equations
SI2-SSE 合作研究:SPIKE——求解大型线性方程组的递归分治并行策略的实现
- 批准号:
1147337 - 财政年份:2012
- 资助金额:
$ 40.89万 - 项目类别:
Standard Grant
Collaborative Research: Simulation of Multibody Dynamics. Leveraging New Numerical Methods and Multiprocessor Capabilities
合作研究:多体动力学模拟。
- 批准号:
0700191 - 财政年份:2007
- 资助金额:
$ 40.89万 - 项目类别:
Standard Grant
相似国自然基金
不确定单机批调度及其结合先进过程控制(APC)在半导体制造中的应用
- 批准号:72301177
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进深度学习模型的面向临床多模态乳腺癌诊断方法研究
- 批准号:62371312
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
- 批准号:52336006
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
基于物理模型融合深度学习的先进合金极限条件应力应变行为预测
- 批准号:52311530082
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
关联锂离子电池正极动力学-热力学与构效-失效机制的先进同步辐射研究
- 批准号:12375328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
PD-1 tumor suppressor mechanims in peripheral T-cell lymphoma
PD-1在外周T细胞淋巴瘤中的抑癌机制
- 批准号:
10581151 - 财政年份:2023
- 资助金额:
$ 40.89万 - 项目类别:
Multi-omic Studies of Local and Systemic Immune Dysregulation in Rosacea
红斑痤疮局部和全身免疫失调的多组学研究
- 批准号:
10590784 - 财政年份:2023
- 资助金额:
$ 40.89万 - 项目类别:
Utilizing Multi-omics to Facilitate Cancer Biology Research
利用多组学促进癌症生物学研究
- 批准号:
10733768 - 财政年份:2023
- 资助金额:
$ 40.89万 - 项目类别:
Classification of Stroke Etiology Using Advanced Computational Approaches
使用先进计算方法对中风病因进行分类
- 批准号:
10371559 - 财政年份:2022
- 资助金额:
$ 40.89万 - 项目类别: