Semi-algebraic complexity and models for massive data set processing
海量数据集处理的半代数复杂性和模型
基本信息
- 批准号:0830626
- 负责人:
- 金额:$ 41.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on the computational complexity of problems in semi-algebraic inference and in massive data set processing, as well as on advancing the analytical techniques of multiparty communication complexity, which has been a useful tool for understanding problems in both of these areas.Semi-algebraic inference systems express sets of constraints using polynomial inequalities and use rules of inference to derive new polynomial inequalities from existing ones. They are widely used in operations research and combinatorial optimization. Part of this project is to investigate what can be derived efficiently using semi-algebraic inference, including the complexity of proofs of unsatisfiability based on semi-algebraic inference, the quality of the linear and semi-definite programming approximations for NP-hard optimization problems that can derived using known semi-algebraic inference, and the extent to which our understanding of inference over binary domains can be leveraged to yield better algorithms for classes of semi-algebraic inference over the real numbers.Networked computers have allowed the accumulation of data sets of unprecedented size. New distributed methods that process such massive data sets efficiently by giving only approximate answers are having substantial impact in practice. However, the theoretical models of massive data set processing that have been analyzed to date represent only a very limited class of methods and do not capture techniques already used in practice. Part of this research is aimed at producing and analyzing theoretical models that will allow us to understand the limitations of these methods for massive data set processing and to make better use of them.Multiparty communication complexity measures the amount of information that must be communicated between multiple participants, each having partial information about the inputs to a function, in order to compute its output. Because of its flexibility it is widely applicable to problems in computational complexity. The final goal of this project is to add to the rather limited set of techniques that can be used to analyze multiparty communication complexity with the aim goal of improving its applications to semi-algebraic inference and distributed massive data set processing.
This project focuses on the computational complexity of problems in semi-algebraic inference and in massive data set processing, as well as on advancing the analytical techniques of multiparty communication complexity, which has been a useful tool for understanding problems in both of these areas.Semi-algebraic inference systems express sets of constraints using polynomial inequalities and use rules of inference to derive new polynomial inequalities from existing ones. 它们被广泛用于操作研究和组合优化。 该项目的一部分是要调查使用半代数推断可以有效地得出的内容,包括基于半代数推断的不可满足性证明的复杂性,线性和半决赛编程的质量和NP-HARD优化问题,可以使用已知的半galgebraic comperive tor lareverive afferiage comperive Inferive tor Leverive我们的理解,并将其理解为范围。对实际数字的半代数推断类别的算法。网络计算机允许积累前所未有的大小的数据集。 仅给出近似答案,可以有效地处理此类大规模数据集的新分布式方法在实践中产生重大影响。 但是,迄今已分析的大规模数据集处理的理论模型仅代表了非常有限的方法,并且不捕获已经在实践中使用的技术。 这项研究的一部分旨在生产和分析理论模型,使我们能够了解这些方法的局限性大规模数据集处理并更好地利用它们。多方属性沟通复杂性测量必须在多个参与者之间传达的信息量,每种信息都必须在功能上提供部分信息,以计算其输入,以计算其输出。 由于其灵活性,它广泛适用于计算复杂性问题。 该项目的最终目标是将可用于分析多方通信复杂性的相当有限的技术添加,其目的是将其应用于半代数推断和分布式大规模数据集处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Beame其他文献
Paul Beame的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Beame', 18)}}的其他基金
AF: Small: Complexity of Representations for Inference
AF:小:推理表示的复杂性
- 批准号:
2006359 - 财政年份:2020
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
SHF: Small: Efficient Verification of Nonlinear Arithmetic
SHF:小型:非线性算术的高效验证
- 批准号:
1714593 - 财政年份:2017
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
AF: Small: Communication and Resource Tradeoffs
AF:小:通信和资源权衡
- 批准号:
1524246 - 财政年份:2015
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
AF: Small:Tradeoffs among Measures in Computational and Proof Complexity
AF:小:计算和证明复杂性措施之间的权衡
- 批准号:
1217099 - 财政年份:2012
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
AF: Large: Collaborative Research: Reliable Quantum Communication and Computation in the Presence of Noise
AF:大型:协作研究:噪声存在下的可靠量子通信和计算
- 批准号:
1111382 - 财政年份:2011
- 资助金额:
$ 41.45万 - 项目类别:
Continuing Grant
Travel Support for IEEE Symposium on Foundations of Computer Science (FOCS 2011)
IEEE 计算机科学基础研讨会 (FOCS 2011) 差旅支持
- 批准号:
1147364 - 财政年份:2011
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
Travel Support for the Symposium on Foundations of Computer Science (FOCS 2010)
计算机科学基础研讨会 (FOCS 2010) 的差旅支持
- 批准号:
1049485 - 财政年份:2010
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
AF: Small: Graph Isomorphism and Quantum Random Walks by Anyons
AF:小:图同构和任意子的量子随机游走
- 批准号:
0916400 - 财政年份:2009
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
Communication Complexity, Proof Complexity, and Approximation
通信复杂性、证明复杂性和近似
- 批准号:
0514870 - 财政年份:2005
- 资助金额:
$ 41.45万 - 项目类别:
Continuing Grant
ITR: Inference in AI, Verification, and Theory: A Unified Approach
ITR:人工智能推理、验证和理论:统一方法
- 批准号:
0219468 - 财政年份:2002
- 资助金额:
$ 41.45万 - 项目类别:
Continuing Grant
相似国自然基金
低维半代数集保拓扑逼近算法及复杂度分析
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
流体计算前沿基础理论和高效数值方法高级专题讲习班
- 批准号:11926414
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
基于Clifford代数的复杂曲面机器人铣削轨迹误差补偿策略研究
- 批准号:51805380
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Gorenstein投射模和局部代数中的相对同调理论
- 批准号:11761047
- 批准年份:2017
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
基于微分代数方程的随机生物经济系统建模与复杂性分析
- 批准号:61703083
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/2 - 财政年份:2023
- 资助金额:
$ 41.45万 - 项目类别:
Research Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302174 - 财政年份:2023
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302173 - 财政年份:2023
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
An estimation of the strengths of bounded arithmetics
有界算术强度的估计
- 批准号:
22KJ1121 - 财政年份:2023
- 资助金额:
$ 41.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/1 - 财政年份:2022
- 资助金额:
$ 41.45万 - 项目类别:
Research Grant