Collaborative Research: Biologically Inspired Robotic Microswimmers
合作研究:仿生机器人微型游泳者
基本信息
- 批准号:0828239
- 负责人:
- 金额:$ 24.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-0828239BreuerBacterial flagellar propulsion represents an extraordinary system in nature for generating motion at the micrometer scale due to their unique molecular polymeric structure adapting to different shapes, depending on the local chemical and flow conditions. Their motion induces a local flow that can be used to propel cells, as well as much larger structures through a fluid environment. This collaborative research team plans to understand, to model and to exploit the physics of flagellar propulsion for use in engineered microfluidic systems. The objective of the program is to understand the fundamental scientific principles that govern the assembly and operation of flagellar-propelled devices (both single swimmers and collectively-powered devices), as well as to demonstrate the enabling technologies necessary to harness polymeric protein nanostructures such as bacterial flagellar filaments on microstructures for use in micron-scale engineered propulsion systems. This collaborative proposal between Drexel University and Brown University is the first to focus on the specific characteristics associated with the polymorphic transformation of bacterial flagellar filaments to demonstrate the ability to move larger engineered elements through a microfluidic landscape in a controlled and directed manner. Fundamental scientific merits addressed by this proposal include using nanoscale flagellar filaments in engineered systems for micron-scale propulsion. Basic questions are to be answered regarding the mechanisms leading to self-coordination of flagellar filaments in responses to a variety of external stimuli. Possible coordination of flagellar filaments to transport microstructures in various microfluidic environments will be examined, thus enabling an entirely new class of swimming robotic systems with applications to bio-engineered actuators, drug delivery systems, and machines for micron-scale transport and assembly. Demonstration of the control of bacterial flagellar filaments at micro- and nanoscales and the ability to integration information technology with bio and nanotechnology will have great impact. The program will have an intensive outreach component, including active recruitment and training of women and underrepresented minorities engineers leveraging and expanding existing and proven programs already in place at Brown and Drexel and outreach to inner-city high school student and teacher populations in both Providence and Philadelphia through the BROWNOUT (Brown) and INSPIRE (Drexel) programs. These enable in-classroom training and teacher-in-residence programs at the university campuses.
CBET-0828239BREERUEREERERUERERUERERERAILAIL鞭毛推进代表了一种本质上的非凡系统,该系统是在微米尺度上产生运动的非凡系统,因为它们的独特分子聚合物结构可适应不同的形状,具体取决于局部化学和流动条件。它们的运动诱导可用于通过流体环境推动细胞以及更大的结构的局部流动。这个协作研究团队计划理解,建模和利用鞭毛推进物理,以用于工程的微流体系统。该计划的目的是了解控制鞭毛式设备的组装和运行的基本科学原则(既有单个游泳者和集体供电的设备),并证明了利用聚合物蛋白质纳米结构所必需的有能力的技术,例如细菌型鞭毛型鞭毛型镀金型在微观型系统上,以实现微米的使用。德雷克塞尔大学与布朗大学之间的这一合作提议是第一个关注与细菌鞭毛细丝的多态性转化相关的特定特征,以证明以受控和定向的方式通过微流体景观移动更大的工程元素。该提案所针对的基本科学优点包括在微米级推进的工程系统中使用纳米级鞭毛细丝。关于导致鞭毛细丝的自我协调的机制,应回答基本问题,以回应各种外部刺激。 将检查鞭毛细丝以在各种微流体环境中运输微观结构的可能协调,从而使一类全新的游泳机器人系统适用于生物工程的执行器,药物输送系统,药物输送系统和微米尺度运输和组装的机器。证明了微观和纳米级细菌鞭毛细丝的控制以及将信息技术与生物和纳米技术集成的能力将产生很大的影响。该计划将具有密集的外展成分,包括对妇女的积极招募和培训以及代表性不足的少数群体工程师,通过在Brown和Drexel的现有和扩大现有的和验证的计划,以及向市区高中学生和教师宣传在Providence和Providence和Philadelphia中通过BrownOut(Brown)以及Inspire(Drexel)计划。这些可以在大学校园内进行课堂内培训和居住课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Breuer其他文献
Kenneth Breuer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Breuer', 18)}}的其他基金
Collaborative Research: The aerodynamic and metabolic costs and benefits of flow interactions in bird flight
合作研究:鸟类飞行中流动相互作用的空气动力学和代谢成本和效益
- 批准号:
1930924 - 财政年份:2020
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Collaborative Research: Effective Face Masks to Mitigate COVID-19 Transmission: Insights from Multimodal Quantitative Analysis
合作研究:有效缓解 COVID-19 传播的口罩:多模态定量分析的见解
- 批准号:
2035002 - 财政年份:2020
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Collaborative Research: Structured wakes behind oscillating foils: characterization, control, and cooperative behavior
合作研究:振荡水翼背后的结构化尾流:表征、控制和合作行为
- 批准号:
1921359 - 财政年份:2019
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
MRI: Acquisition of an Animal Flight and Aeromechanics Wind Tunnel
MRI:动物飞行和空气力学风洞的采集
- 批准号:
1725935 - 财政年份:2017
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Improving the Safety and Agility of Robotic Flight with Bat-Inspired Flexible-Winged Robots
NRI/合作研究:利用蝙蝠启发的柔性翼机器人提高机器人飞行的安全性和敏捷性
- 批准号:
1426338 - 财政年份:2014
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Pushing & Pulling, Bending & Buckling; Viscosity and Elasticity in Flagellar Swimming
推动
- 批准号:
1336638 - 财政年份:2013
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
"Contact Drop Formation and Contact Line Flows"
“接触滴形成和接触线流动”
- 批准号:
1066141 - 财政年份:2011
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
The Structure and Dynamics of Thin Film Liquid-Vapor Systems in Microgeometries
微观几何中薄膜液-汽系统的结构和动力学
- 批准号:
0854148 - 财政年份:2009
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
NER: Self-Coordinating Bacterial Flagella as Actuators in Engineered Fluidic Systems
NER:自协调细菌鞭毛作为工程流体系统中的执行器
- 批准号:
0508394 - 财政年份:2005
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Development of a Multi-Spectral Fluid/Solid Micro-Motion Measurement System
多光谱流体/固体微动测量系统的研制
- 批准号:
0079723 - 财政年份:2000
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Origins and Benefits of Biologically Active Components in Human Milk
母乳中生物活性成分的来源和益处
- 批准号:
10683486 - 财政年份:2023
- 资助金额:
$ 24.65万 - 项目类别:
NSFGEO-NERC: Collaborative Research: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:合作研究:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
- 批准号:
2023434 - 财政年份:2021
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:合作研究:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
- 批准号:
2023442 - 财政年份:2021
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Collaborative Research: Biologically-driven island-building during sea-level rise and its implications for promoting resilient coastlines
合作研究:海平面上升期间生物驱动的岛屿建设及其对促进海岸线恢复力的影响
- 批准号:
2032130 - 财政年份:2021
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Collaborative Research: Biologically-driven island-building during sea-level rise and its implications for promoting resilient coastlines
合作研究:海平面上升期间生物驱动的岛屿建设及其对促进海岸线恢复力的影响
- 批准号:
2032129 - 财政年份:2021
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant