Collaborative Research: Models for Dynamic Discrete Response Data with Spatial Autocorrelation: Specification and Estimation
协作研究:具有空间自相关的动态离散响应数据模型:规范和估计
基本信息
- 批准号:0819087
- 负责人:
- 金额:$ 3.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many behaviors of interest involve discrete response in a temporal and spatial context. These may be the success of plant species in a series of adjacent fields, land-use designations across 30-meter grid cells, popular election outcomes across counties, and levels of crime across neighborhoods and over time. In the transportation arena, such responses include trade-flow distributions across zones, and vehicle-ownership levels across households. All these behaviors can be measured (and/or coded) as discrete responses, dependent on various influential factors and exhibiting some degree of temporal and spatial dependence or autocorrelation. Significant uncertainty generally lingers in predictive models; unobservable yet influential factors remain. The size of such contributions varies, often in a continuous fashion over space. In contrast to time-series data, the dependencies are two dimensional. This added complexity tends to limit model specifications to the use of weight matrices, smaller data sets, and arbitrary correlation patterns. Methods are needed to capitalize on the emergence of huge and highly detailed digital data sets. This work seeks to address existing gaps by developing new statistical models for discrete response data that incorporate the effects of spatial and temporal autocorrelation. The research will develop, estimate, apply, and compare dynamic ordered and unordered probit models for spatial processes, based on a marriage of satellite imagery and more commonly available data bases for urban systems analysis. The first of these models emphasizes ordered responses (such as differing intensities of land use), while the latter recognizes unordered, categorical data (using a latent-response optimization framework). Both sets of models will apply over time and space, using a combination of LandSat satellite imagery and more readily available data sets over several years. Multiple parameter estimation techniques will be explored, including maximum simulated likelihood estimation (MSLE), Bayesian methods, generalized method of moments (GMM), and non-parametric techniques. Model application will be demonstrated using land-cover/land-use data acquired via LandSat satellite imagery for Austin, Texas, and less urbanized regions of the globe as data sets become available. The Austin imagery will be supplemented by U.S. Census data and land-use and transportation-systems data maintained by the region's planning agency. Almost all data sets have a spatial dimension to them and the world is poised to benefit from improvements in spatial econometric methods and channels of data acquisition for a tremendous variety of applications. The first of these models will be used to better understand and anticipate changes in the intensity of land development (e.g., undeveloped, lightly developed, and highly developed), while the second will be used to appreciate variations in land use over a categorical (rather than ordered) set of designations (e.g., residential versus commercial versus undeveloped). The focus and most challenging aspects of the work are methodological in nature. Nevertheless, the use of land-use data sets offers a meaningful and highly tangible application that demonstrates the value of new spatial econometric methods and the benefits of satellite imagery in tandem with more traditional data sets. The work's primary contributions are specification and estimation techniques for wholly new statistical methods that recognize temporal and spatial dependencies in discrete multiple-response data, and the demonstration of how satellite images can be used for purposes of metropolitan planning and transportation systems modeling. The model specifications and estimation techniques to be developed will fill a key void in the fields of spatial statistics and spatial econometrics, where models of continuous response data are the norm. The generic nature of the spatial econometric methods to be developed makes them applicable to many social, environmental, and other issues, wherever outcomes are discrete in nature and observed over time and space. Their application to land-cover change will enhance current understanding of regional development and human activity patterns, facilitating public and private policy evaluation.
许多感兴趣的行为涉及时间和空间背景下的离散响应。 这些可能是一系列相邻田地中植物物种的成功、30 米网格单元内的土地使用指定、各县的民众选举结果以及各个社区和一段时间内的犯罪水平。 在交通领域,此类应对措施包括跨区域的贸易流量分布以及家庭的车辆拥有量。 所有这些行为都可以作为离散响应来测量(和/或编码),依赖于各种影响因素并表现出某种程度的时间和空间依赖性或自相关性。 预测模型中通常存在显着的不确定性;不可观察但有影响的因素仍然存在。 这种贡献的大小各不相同,通常在空间上是连续的。与时间序列数据相比,依赖性是二维的。 这种增加的复杂性往往会将模型规范限制为使用权重矩阵、较小的数据集和任意相关模式。 需要找到方法来利用庞大且高度详细的数字数据集的出现。 这项工作旨在通过为离散响应数据开发新的统计模型来解决现有的差距,该模型纳入了空间和时间自相关的影响。 该研究将基于卫星图像和更常用的城市系统分析数据库的结合,开发、估计、应用和比较空间过程的动态有序和无序概率模型。 第一个模型强调有序响应(例如不同的土地利用强度),而后者则识别无序的分类数据(使用潜在响应优化框架)。 两组模型都将结合陆地卫星图像和几年来更容易获得的数据集,在时间和空间上适用。 将探索多种参数估计技术,包括最大模拟似然估计(MSLE)、贝叶斯方法、广义矩方法(GMM)和非参数技术。 当数据集可用时,将使用通过 LandSat 卫星图像获取的德克萨斯州奥斯汀和全球城市化程度较低的地区的土地覆盖/土地利用数据来演示模型应用。 奥斯汀图像将得到美国人口普查数据以及该地区规划机构维护的土地使用和交通系统数据的补充。几乎所有数据集都具有空间维度,世界将受益于空间计量经济学方法和各种应用数据采集渠道的改进。 第一个模型将用于更好地理解和预测土地开发强度的变化(例如,未开发、轻度开发和高度开发),而第二个模型将用于评估土地利用在分类(而不是比订购的)一组名称(例如,住宅、商业、未开发)。 这项工作的重点和最具挑战性的方面本质上是方法论。 尽管如此,土地利用数据集的使用提供了一种有意义且高度切实的应用,展示了新的空间计量经济学方法的价值以及卫星图像与更传统的数据集相结合的好处。 这项工作的主要贡献是全新统计方法的规范和估计技术,这些方法可以识别离散多响应数据中的时间和空间依赖性,并演示如何将卫星图像用于大都市规划和交通系统建模。 待开发的模型规范和估计技术将填补空间统计和空间计量经济学领域的一个关键空白,在这些领域,连续响应数据模型是常态。 待开发的空间计量经济学方法的通用性质使其适用于许多社会、环境和其他问题,只要结果本质上是离散的并随时间和空间观察。 它们在土地覆盖变化中的应用将增强当前对区域发展和人类活动模式的理解,促进公共和私人政策评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaokun (Cara) Wang其他文献
Multi-criteria assessment and ranking framework for the potential of cargo cycle operation: Using New York city as an example
货物循环运营潜力的多标准评估与排名框架:以纽约市为例
- DOI:
10.1016/j.tra.2023.103898 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:0
- 作者:
Yue Ding;Xiaokun (Cara) Wang;Sofía Pérez;Jeffrey Wojtowicz;Alison Conway - 通讯作者:
Alison Conway
Xiaokun (Cara) Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaokun (Cara) Wang', 18)}}的其他基金
SCC-CIVIC-PG Track B: A Coordinated Food Hub Network and Farm to Institution Program: Building Bridges between Small Local Farmers and Institutions in New York State Capital Region
SCC-CIVIC-PG 轨道 B:协调的食品中心网络和农场到机构计划:在纽约州首府地区当地小农民和机构之间架起桥梁
- 批准号:
2228544 - 财政年份:2022
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track B: A Coordinated Food Hub Network and Farm to Institution Program: Building Bridges between Small Local Farmers and Institutions in New York State Capital Region
SCC-CIVIC-PG 轨道 B:协调的食品中心网络和农场到机构计划:在纽约州首府地区当地小农民和机构之间架起桥梁
- 批准号:
2228544 - 财政年份:2022
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
Collaborative Research: Models for Dynamic Discrete Response Data with Spatial Autocorrelation: Specification and Estimation
协作研究:具有空间自相关的动态离散响应数据模型:规范和估计
- 批准号:
1137517 - 财政年份:2011
- 资助金额:
$ 3.89万 - 项目类别:
Continuing Grant
相似国自然基金
IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
- 批准号:82301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
- 批准号:82373325
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
- 批准号:82301216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
- 批准号:82301257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
- 批准号:52371115
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315696 - 财政年份:2024
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315701 - 财政年份:2024
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319125 - 财政年份:2024
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
- 批准号:
2334797 - 财政年份:2024
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant