Discrete problems in harmonic analysis with applications to ergodic theory and additive number theory

调和分析中的离散问题及其在遍历理论和加性数论中的应用

基本信息

  • 批准号:
    0803190
  • 负责人:
  • 金额:
    $ 11.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

The proposed research will deal with problems that are on the boundary between different fields of mathematics; harmonic analysis, ergodic theory, and number theory. The problems occur in different contexts however a central role is played by properties certain exponential sums and related methods of analytic number theory, such as the Hardy-Littlewood method of exponential sums. One set of problems concern maximal and singular integral operators associated with polynomial surfaces on discrete nilpotent groups. These are discrete analogues of problems harmonic analysis on Euclidean spaces, and also are naturally connected to pointwise ergodic theory of non-commuting transformations. Technically, a crucial role is played by an extension of the "circle method" to an operator valued settings, which arises because of non-commutativity of the underlying group. Another set of the proposed problems are in the settings of additive number theory/combinatorics, as they are to show the existence of certain structures in subsets of positive density, or in cells obtained after a finite partitioning of integer lattices. The emphasis is on the Fourier analytic approach to address certain problems in the multidimensional or nonlinear settings.Because of its interdisciplinary nature, the project is expected to have an impact on the various fields involved. It aims utilize and extend several techniques, some of which is recent and is still being developed. The emphasis is on the interplay of techniques of the above fields, to attack open problems of interest. The project would enable the PI to continue to support graduate students and post-docs, and in general, to introduce young researchers to this rapidly developing area of mathematics.
拟议的研究将解决不同数学领域之间的边界问题;调和分析、遍历理论和数论。这些问题出现在不同的环境中,但核心作用是由某些指数和的属性和解析数论的相关方法(例如指数和的 Hardy-Littlewood 方法)发挥的。一组问题涉及与离散幂零群上的多项式曲面相关的最大和奇异积分算子。这些是欧几里得空间上调和分析问题的离散类似物,并且也自然地与非交换变换的逐点遍历理论相关。从技术上讲,将“循环方法”扩展到运算符值设置发挥着至关重要的作用,这是由于底层群的不可交换性而产生的。另一组提出的问题是在加法数论/组合学的设置中,因为它们要显示正密度子集中或整数格有限划分后获得的单元中某些结构的存在。重点是用傅里叶分析方法来解决多维或非线性环境中的某些问题。由于其跨学科性质,该项目预计将对所涉及的各个领域产生影响。它的目标是利用和扩展多种技术,其中一些是最近出现的并且仍在开发中。重点是上述领域技术的相互作用,以解决感兴趣的开放问题。该项目将使 PI 能够继续支持研究生和博士后,并总体上向年轻研究人员介绍这个快速发展的数学领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Akos Magyar其他文献

Akos Magyar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Akos Magyar', 18)}}的其他基金

Some problems at the interface of harmonic analysis, number theory, and combinatorics
调和分析、数论和组合学接口的一些问题
  • 批准号:
    1600840
  • 财政年份:
    2016
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: New Trends in Harmonic Analysis
FRG:协作研究:谐波分析的新趋势
  • 批准号:
    0456490
  • 财政年份:
    2005
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Standard Grant
Discrete Problems in Harmonic Analysis, Ergodic Theorems and Singularities
调和分析、遍历定理和奇点中的离散问题
  • 批准号:
    0202021
  • 财政年份:
    2002
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Continuing Grant
Problems in Analysis Related to Lattice Points and Singularities
与格点和奇点相关的分析问题
  • 批准号:
    9970899
  • 财政年份:
    1999
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Standard Grant

相似国自然基金

构网型变流器接入电网引发谐波电能质量问题的机理与抑制方法研究
  • 批准号:
    52377169
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
谐波注入式多相永磁直驱电机系统的科学问题研究
  • 批准号:
    52037005
  • 批准年份:
    2020
  • 资助金额:
    300 万元
  • 项目类别:
    重点项目
时间谐波涡流电磁问题离散矩阵的预处理及快速计算
  • 批准号:
    11901324
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
有源电力滤波器选频次谐波补偿两个关键问题的改进研究
  • 批准号:
    51707168
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
中国空间电力线谐波辐射现象关键问题研究
  • 批准号:
    51777006
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Some problems in harmonic analysis
谐波分析中的一些问题
  • 批准号:
    2350101
  • 财政年份:
    2024
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Standard Grant
Problems in Harmonic Analysis Relating to Curvature
与曲率相关的谐波分析问题
  • 批准号:
    2246906
  • 财政年份:
    2023
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Standard Grant
International Conference on Microlocal Analysis, Harmonic Analysis, and Inverse Problems
微局域分析、调和分析和反问题国际会议
  • 批准号:
    2154480
  • 财政年份:
    2022
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Standard Grant
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
  • 批准号:
    RGPIN-2021-03545
  • 财政年份:
    2022
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
  • 批准号:
    RGPIN-2021-03545
  • 财政年份:
    2022
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了