Random, Stochastic, and Self-similar Equations
随机、随机和自相似方程
基本信息
- 批准号:0806103
- 负责人:
- 金额:$ 17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A wide array of mathematical methods will be used to increase the understanding of the long and short term behavior of processes occurring in self-similar, fractal and disordered media. The existence and uniqueness of self-similar Dirichlet forms, Laplacians and diffusions will be proved on a wide class of fractals, including infinitely ramified generalized Sierpinski carpets and limit sets of self-similar groups. Gaussian and non-Gaussian heat kernel estimates and Green's function estimates will be studied on self-similar and random fractals. The project will contribute to the ergodic theory of products of not necessarily independent matrices and their relation to local properties of processes on fractals. Asymptotic formulas for Lyapunov exponents of differential and difference equations with small random perturbations, and estimates of the Lyapunov exponents of stochastic differential equations will be obtained, and related to the spectral problems for stochastic differential equations. Work will be done to investigate such questions as functional spaces, partial differential equations, and various notions of differential geometry and topology on fractals. The project contributes to better understand the analysis on Julia sets, limit sets of self-similar groups and finite automata, quantum graphs, products of matrices and ergodic theory, non-commutative calculus and geometry.The project contributes to the study of processes in disordered media (fractals), which have many applications in physics, chemistry, biological sciences and engineering. Diffusion processes in percolation clusters, vibrations of fractal objects, signal propagating in channels with random obstacles, electro-magnetic waves in fractal antennae, Rossby waves in oceanography, models of financial markets are just a few of many examples of such processes. The project includes various activities that integrate research and education. The broader impacts of the project include contribution to the development of human resources in science and engineering, expanding participation of underrepresented groups, and enhancing infrastructure for research and education.
多种数学方法将用于增加对自相似,分形和无序培养基中发生的过程的长期和短期行为的理解。自相似的迪里奇,拉普拉斯主义者和扩散的存在和独特性将在一系列宽类的分形上证明,包括无限分支的广义sierpinski地毯和限制自相似群体的限制集。高斯和非高斯热核估计值和格林的功能估计将在自相似和随机分形上进行研究。该项目将有助于不一定是独立矩阵的产品及其与分形过程的局部特性的关系。将获得与随机扰动小的差异方程式和差异方程式的Lyapunov指数的渐近公式,并将获得随机微分方程的Lyapunov指数的估计,并与随机微分方程的光谱问题有关。将进行研究,以调查功能空间,部分微分方程以及分形差异几何学和拓扑概念等问题。该项目有助于更好地了解对朱利娅集合的分析,自相似群体的限制集以及有限的自动机,量子图,矩阵和千古论理论的产物,非共同的微积分和几何形状。该项目有助于无序培养基(Fractals)过程(Fractals)的过程,这些过程在物理,化学,化学,生物学,生物学和工程中都有许多应用。渗透簇,分形物体的振动,信号在具有随机障碍物的通道中传播的传播,分形触角中的电磁波,海洋学中的rossby波,金融市场模型只是此类过程的许多例子中的一些例子。该项目包括整合研究和教育的各种活动。该项目的更广泛影响包括对科学和工程学中人力资源的发展,扩大代表性不足的群体的参与以及增强研究和教育的基础设施的贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Teplyaev其他文献
Convergence, optimization and stability of singular eigenmaps
奇异特征图的收敛、优化和稳定性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Bernard Akwei;Bobita Atkins;Rachel Bailey;Ashka Dalal;Natalie Dinin;Jonathan Kerby;Tess McGuinness;Tonya Patricks;Luke Rogers;Genevieve Romanelli;Yiheng Su;Alexander Teplyaev - 通讯作者:
Alexander Teplyaev
On the existence of optimal shapes in architecture
- DOI:
10.1016/j.apm.2021.01.041 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Michael Hinz;Frédéric Magoulès;Anna Rozanova-Pierrat;Marina Rynkovskaya;Alexander Teplyaev - 通讯作者:
Alexander Teplyaev
Alexander Teplyaev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Teplyaev', 18)}}的其他基金
Conference: Analysis on fractals and networks with applications, at Luminy
会议:分形和网络分析及其应用,在 Luminy 举行
- 批准号:
2334026 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Random, Stochastic, and Self-Similar Equations
随机、随机和自相似方程
- 批准号:
1613025 - 财政年份:2016
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Random, Stochastic, and Self-similar Equations
随机、随机和自相似方程
- 批准号:
1106982 - 财政年份:2011
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Random, Stochastic, and Self-similar Equations
随机、随机和自相似方程
- 批准号:
0505622 - 财政年份:2005
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
相似国自然基金
随机乘积和带状矩阵最大特征值的极限分布
- 批准号:12371157
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
随机噪声下分数阶关联非线性系统的分散主动抗干扰控制
- 批准号:62303397
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
航空重力及重力梯度非结构网格多分辨率三维密度随机反演研究
- 批准号:42374168
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
预测-决策闭环一体化框架下电氢碳多能流耦合钢铁园区的随机生产调度和网荷互动研究
- 批准号:52377121
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
随机Q模型中二维随机单态相的量子蒙特卡洛研究
- 批准号:12304182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Random, Stochastic, and Self-Similar Equations
随机、随机和自相似方程
- 批准号:
1613025 - 财政年份:2016
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Random, Stochastic, and Self-similar Equations
随机、随机和自相似方程
- 批准号:
1106982 - 财政年份:2011
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Random, Stochastic, and Self-similar Equations
随机、随机和自相似方程
- 批准号:
0505622 - 财政年份:2005
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Integrated Research on Equilibrium Random Phenomena
平衡随机现象的综合研究
- 批准号:
10304006 - 财政年份:1998
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Scientific Research (A).
STOCHASTIC DIFFERENTIAL EQUATIONS AND LIE ALGEBRAS,LIE GROUPS
随机微分方程和李代数、李群
- 批准号:
07454238 - 财政年份:1995
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Scientific Research (B)