Collaborative Research: Bellman function, Harmonic Analysis and Operator Theory

合作研究:贝尔曼函数、调和分析和算子理论

基本信息

  • 批准号:
    0800876
  • 负责人:
  • 金额:
    $ 53.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

Abstract (Volberg/Nazarov/Treil: 0758552/0800243/0800876)The proposed research is at the intersection of Geometric Measure Theory and Harmonic Analysis. The main objective of Geometric Measure Theory is to find structures in seemingly unstructured, fractal-like patterns. The classical Harmonic Analysis studies wave propagation, and investigation of singular integral operators is a crucial part of the modern approach. Our continuing research, as well as the work of several other groups of mathematicians in the US and abroad, has demonstrated that new knowledge can be obtained by exploring the interaction between these two areas. As a result of our proposal we expect to solve several important problems in Geometric Measure Theory as well as in Harmonic Analysis. The pattern recognition (i.e., problems in Geometric Measure Theory) would be advanced by using methods originating in Harmonic Analysis, and vice versa. We also expect to develop new methods to study both patterns and waves. It is expected that these newly developed techniques will have impact to adjacent areas of engineering and computer sciences such as image processing and data compression.
摘要(Volberg/Nazarov/Treil:0758552/0800243/0800876)拟议的研究是在几何测量理论与谐波分析的交集中。几何测量理论的主要目标是在看似非结构化的类似分形的模式中找到结构。经典的谐波分析研究波传播,对单数积分运算符的研究是现代方法的关键部分。我们的持续研究以及美国和国外的其他几个数学家群体的工作表明,可以通过探索这两个领域之间的相互作用来获得新知识。由于我们的建议,我们期望在几何测量理论以及谐波分析中解决一些重要问题。通过使用源自谐波分析的方法,将提出模式识别(即几何度量理论中的问题),反之亦然。我们还期望开发新的方法来研究模式和波浪。预计这些新开发的技术将对工程和计算机科学(例如图像处理和数据压缩)的相邻领域产生影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Serguei Treil其他文献

Serguei Treil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Serguei Treil', 18)}}的其他基金

Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
  • 批准号:
    2154321
  • 财政年份:
    2022
  • 资助金额:
    $ 53.42万
  • 项目类别:
    Standard Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
  • 批准号:
    1856719
  • 财政年份:
    2019
  • 资助金额:
    $ 53.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Calderon-Zygmund Operators in Highly Irregular Environments, and Applications
合作研究:高度不规则环境中的 Calderon-Zygmund 算子及其应用
  • 批准号:
    1600139
  • 财政年份:
    2016
  • 资助金额:
    $ 53.42万
  • 项目类别:
    Continuing Grant
Collaborative research: Universality phenomena and some hard problems of non-homogeneous Harmonic Analysis
合作研究:非齐次调和分析的普遍性现象和一些难题
  • 批准号:
    1301579
  • 财政年份:
    2013
  • 资助金额:
    $ 53.42万
  • 项目类别:
    Continuing Grant
Collaborative research: Non-homogeneous harmonic analysis, two weight estimates and spectral problems.
合作研究:非齐次谐波分析、二次权重估计和谱问题。
  • 批准号:
    0501065
  • 财政年份:
    2005
  • 资助金额:
    $ 53.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Multidimensional and Non-Homogeneous Harmonic Analysis: Bellman Functions, Perturbations of Normal Operators and Two Weight Estimates of Singular Integrals
合作研究:多维非齐次调和分析:贝尔曼函数、正规算子的扰动和奇异积分的两种权重估计
  • 批准号:
    0200584
  • 财政年份:
    2002
  • 资助金额:
    $ 53.42万
  • 项目类别:
    Continuing Grant
An Operator Approach to Problems in Analysis and Probability: Matrix Muckenhoupt Weights, Hankel and Toeplitz Operators, Singular Integrals and the Angle between Past and Future
分析和概率问题的算子方法:矩阵 Muckenhoupt 权重、Hankel 和 Toeplitz 算子、奇异积分以及过去与未来之间的角度
  • 批准号:
    9622936
  • 财政年份:
    1996
  • 资助金额:
    $ 53.42万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Hankel Operators and Their Applications
数学科学:汉克尔算子及其应用
  • 批准号:
    9304011
  • 财政年份:
    1993
  • 资助金额:
    $ 53.42万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于经验的无人机增强学习控制问题研究
  • 批准号:
    61806217
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
随机最优控制问题相关的Hamilton-Jacobi-Bellman方程及其弱解研究
  • 批准号:
    11501532
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于粘性解的随机时滞方程最优控制问题研究
  • 批准号:
    11401474
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
贝尔曼-伊萨克方程的研究和金融应用
  • 批准号:
    11371280
  • 批准年份:
    2013
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
随机利率与随机波动率模型下保险公司最优投资与再保险问题研究
  • 批准号:
    11301376
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 53.42万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 53.42万
  • 项目类别:
    Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.42万
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 53.42万
  • 项目类别:
Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
  • 批准号:
    477924
  • 财政年份:
    2024
  • 资助金额:
    $ 53.42万
  • 项目类别:
    Salary Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了