Classification of amenable C*-algebras and applications

适合的 C* 代数分类和应用

基本信息

  • 批准号:
    0754813
  • 负责人:
  • 金额:
    $ 14.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

This proposal is to study when two C*-algebras are isomorphic by comparing their K-theoretic data. In particular, it attempts to use the K-theoretic data to determine whether two unital separable simple amenable C*-algebras which are approximately divisible (or Z-stable) and satisfies the Universal Coefficient Theorem are isomorphic. It also proposes to study a closely related problem whether K-theoretic data of a minimal dynamic system could determine the structure of the minimal dynamic system by studying the associated transformation C*-algebra together with other K-theoretic data of the system. Viewing C*-algebras as non-commutative topological spaces, it also proposes to study (approximate) homotopy theory in C*-algebras.In the micro-scopical physical world, an observable may be modeled by a self-adjoint operator on a Hilbert space, according to Dirac and von Neumann. A system of such operators forms a C*-algebra. Such a system has the structure of addition and multiplication like the system of complex numbers. However, in a C*-algebra, multiplication may not be commutative which corresponds to the Heisenberg uncertainty principle. Let X be a compact metric space and F be a transformation from X to X which is assumed to be invertible and both F and its inverse are continuous. The pair (X, F) forms the associated transformation C*-algebra. To study the dynamical structure of (X, F), one may start with the associated C*-algebra. The study of the structure of the associated C*-algebra provides the information of the original dynamical system. One of such examples is the special case that X is the unit circle and F is an irrational rotation on the circle. The associated C*-algebra is a unital separable simple amenable C*-algebra. This C*-algebra can also be formed by a typical non-commutative relation of two unitary operators. It is also known as non-commutative torus. There are many C*-algebras come from different fields of sciences and the study of C*-algebras has variety of applications. For example, C*-algebras may be formed by operators on some Hilbert spaces, by classical dynamic systems, by non-commutative geometry, by group representations, or, by many other studies such as quantization. To classify a class of C*-algebras is to use a few computable data to completely determine C*-algebras in the class and their structure, in the process, one may also understand the related operators on Hilbert spaces, dynamical systems, non-commutative geometry, group representations, and, in turn, these may further provide applications to other parts of the scientific world.
该建议是研究两个C* - 代数何时是同构,通过比较它们的K理论数据。特别是,它试图使用K理论数据来确定两个近似可分开(或Z稳定)并满足通用系数定理的两个Unital可分离的简单的c* - 代数是否同构。它还提出了一个密切相关的问题,是否可以通过研究相关的转换C*-Algebra以及系统的其他K理论数据来确定最小动态系统的k理论数据是否可以确定最小动态系统的结构。 根据Dirac和Voneumann的说法,将C* - 代数视为非共同拓扑空间,它还提议研究(近似)同质理论在C*-Algebras中。此类操作员的系统形成了C*-Algebra。这样的系统具有添加和乘法的结构,例如复数系统。但是,在c* - 代数中,乘法可能不相当,这与海森堡的不确定性原理相对应。令X为紧凑的度量空间,F为从X到X的转换,假定可逆,而F及其逆也是连续的。这对(x,f)形成了相关的转换C*-Algebra。 为了研究(x,f)的动力结构,可以从相关的c* - 代数开始。 相关C*-Algebra结构的研究提供了原始动力学系统的信息。这样的例子之一是X是单位圆,F是圆圈上的不合理旋转。相关的c* - 代数是一个Unital可分离的简单的Amenable c*-ergebra。该c* - 代数也可以通过两个单一操作员的典型非交通关系形成。它也被称为非交流性圆环。有许多C* - 代数来自不同的科学领域,而C* - 代数的研究具有多种应用。例如,c* - 代数可以是由经营者在某些希尔伯特空间,经典动态系统,非交通性几何形状,分组表示或其他许多其他研究(例如量化)中形成的。为了对一类C* - 代数进行分类,是使用一些可计算数据来完全确定类及其结构中的C* - 代数,在此过程中,人们还可以理解希尔伯特空间,动力学系统,非交互性几何学,团体表征的相关操作员,而这些又可能进一步提供有关科学世界的其他部分的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huaxin Lin其他文献

Hereditary uniform property $Gamma$
世袭制服财产$Gamma$
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huaxin Lin
  • 通讯作者:
    Huaxin Lin
Tracial oscillation zero and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="script">Z</mml:mi></mml:math>-stability
迹线振荡零和 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="script">Z</
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Huaxin Lin
  • 通讯作者:
    Huaxin Lin
ay 2 00 4 Classification of homomorphisms and dynamical systems
ay 2 00 4 同态和动力系统的分类
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huaxin Lin
  • 通讯作者:
    Huaxin Lin
Index to Volume 131
第 131 卷索引
  • DOI:
    10.1016/0022-460x(89)91020-1
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    R. Brockett;A. Mansouri;B. Chiarellotto;Andrea Pulita;H. Bercovici;W. S. Li;D. Timotin;K. Ito;Shun Nakamura;B. Totaro;Claus Gerhardt;Yasuo Ohno;Takashi Taniguchi;S. Wakatsuki;V. Mazorchuk;C. Stroppel;N. Burq;F. Planchon;Huaxin Lin
  • 通讯作者:
    Huaxin Lin
Tracially Quasidiagonal Extensions

Huaxin Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huaxin Lin', 18)}}的其他基金

Dynamical Systems, C*-Algebra Theory, and K-Theory
动力系统、C* 代数理论和 K 理论
  • 批准号:
    1954600
  • 财政年份:
    2020
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
Simple Amenable C*-algebras and K-theory
简单可行的 C* 代数和 K 理论
  • 批准号:
    1665183
  • 财政年份:
    2017
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Continuing Grant
C*-algebra theory, Classification and its applications
C*-代数理论、分类及其应用
  • 批准号:
    1361431
  • 财政年份:
    2014
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
The Structure of Simple Amenable C*-Algebras and their Homomorphisms.
简单的 C* 代数的结构及其同态。
  • 批准号:
    1101360
  • 财政年份:
    2011
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Continuing Grant
C*-Algebras and Dynamical Systems
C*-代数和动力系统
  • 批准号:
    0355273
  • 财政年份:
    2004
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Continuing Grant
Simple C*-Algebras
简单的 C* 代数
  • 批准号:
    0097903
  • 财政年份:
    2001
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
The Structure of Nuclear C*-Algebras
核 C* 代数的结构
  • 批准号:
    9801482
  • 财政年份:
    1998
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
International Conference on Operator Algebras and Operator Theory to be held in Shanghai, China, July 4-9, 1997
算子代数和算子理论国际会议将于1997年7月4-9日在中国上海举行
  • 批准号:
    9705842
  • 财政年份:
    1997
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
Classification of C*-Algebras, Extensions and Homomorphisms
C*-代数的分类、扩展和同态
  • 批准号:
    9531776
  • 财政年份:
    1996
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: C*-Algebra Extensions and Homomorphisms
数学科学:C*-代数扩展和同态
  • 批准号:
    9596028
  • 财政年份:
    1994
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

秦岭川金丝猴雄性适合度对维持社群稳定机制的影响
  • 批准号:
    32300413
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
m6A RNA甲基化调控小菜蛾Bt Cry1Ac杀虫蛋白抗性的适合度代偿机制
  • 批准号:
    32372600
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
UGT家族基因协调禾谷缢管蚜高效氯氰菊酯抗性和生物适合度的分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
适合于缺乏强震记录地区抗震设计的场地效应简单评价方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
濒危植物资源冷杉残存种群的性系统多态性及对有性繁殖适合度的影响
  • 批准号:
    32260061
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Classification of amenable group actions on C*-algebras and its applications
C*-代数上的服从群作用的分类及其应用
  • 批准号:
    23540256
  • 财政年份:
    2011
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classification of amenable C*-algebras not necessarily of real rank zero
适合的 C* 代数的分类不一定是实秩零
  • 批准号:
    327295-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Discovery Grants Program - Individual
Classification of amenable C*-algebras not necessarily of real rank zero
适合的 C* 代数的分类不一定是实秩零
  • 批准号:
    327295-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Discovery Grants Program - Individual
Classification of amenable C*-algebras not necessarily of real rank zero
适合的 C* 代数的分类不一定是实秩零
  • 批准号:
    327295-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Discovery Grants Program - Individual
Classification of amenable C*-algebras not necessarily of real rank zero
适合的 C* 代数的分类不一定是实秩零
  • 批准号:
    327295-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了