Exploiting Prior Knowledge in Compressed Sensing
利用压缩感知的先验知识
基本信息
- 批准号:0725422
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merit: The field of compressive sensing (CS) promises to revolutionize digital processing broadly. The key idea is the use of nonadaptive linear projections to acquire an efficient, dimensionally reduced representation of a signal or image directly using just a few measurements. However, there are two limitations in current practical CS algorithms that constrain their application in practical scenarios. First, most of the work in CS deals with deterministic signals and does not assume any prior knowledge about them. In many applications, however, additional a priori information on the underlying signals is available, in addition to their sparsity. The a priori information may come either deterministically or statistically, e.g., through second order statistics. Our preliminary results show that exploiting it leads to a substantial performance improvement. The second constraint in standard CS is the need to perform reconstruction in a basis where the signal of interest admits a sparse representation, which reduces flexibility in practical applications. This research addresses these limitations by exploring how a priori information can be used in the general framework of CS to achieve improved performance, even when reconstruction is performed in a basis where the signal of interest does not admit a sparse representation. Furthermore, as a proof of concept, we will build a hardware demonstration system to show the feasibility of the proposed techniques in practical CS and with real-world signals.Broader Impact: Advances in compressive sensing may have a profound impact broadly, including applications in spectroscopy, imaging, communications, as well as consumer electronics. This project will include an integrated educational program involving two Ph.D. students and three undergraduate students, who will be introduced into this new field.
智力优势:压缩传感 (CS) 领域有望彻底改变数字处理。 关键思想是使用非自适应线性投影,仅使用少量测量即可直接获取信号或图像的高效、降维表示。 然而,当前实用的CS算法存在两个局限性,限制了其在实际场景中的应用。 首先,计算机科学的大部分工作都涉及确定性信号,并且不假设任何有关它们的先验知识。 然而,在许多应用中,除了稀疏性之外,还可以获得有关底层信号的附加先验信息。 先验信息可以是确定性的或统计性的,例如通过二阶统计。 我们的初步结果表明,利用它可以显着提高性能。 标准CS的第二个约束是需要在感兴趣的信号允许稀疏表示的基础上执行重建,这降低了实际应用中的灵活性。 本研究通过探索如何在 CS 的通用框架中使用先验信息来解决这些限制,以实现改进的性能,即使是在感兴趣的信号不允许稀疏表示的基础上执行重建时也是如此。 此外,作为概念证明,我们将构建一个硬件演示系统,以展示所提出的技术在实际 CS 和现实世界信号中的可行性。 更广泛的影响:压缩传感的进步可能会产生广泛的深远影响,包括在光谱学、成像、通信以及消费电子产品。 该项目将包括一个涉及两名博士的综合教育计划。学生和三名本科生,他们将被引入这个新领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Javier Garcia-Frias其他文献
Information theoretical aspects in coherent optical lithography systems
相干光刻系统中的信息理论方面
- DOI:
10.1364/oe.25.029043 - 发表时间:
2017-11 - 期刊:
- 影响因子:3.8
- 作者:
Xu Ma;Hao Zhang;Zhiqiang Wang;Yanqiu Li;Gonzalo R. Arce;Javier Garcia-Frias;Lu Zhang - 通讯作者:
Lu Zhang
An informational lithography approach based on source and mask optimization
基于源和掩模优化的信息光刻方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:5.4
- 作者:
Xu Ma;Yihua Pan;Shengen Zhang;Javier Garcia-Frias;Gonzalo R. Arce - 通讯作者:
Gonzalo R. Arce
Javier Garcia-Frias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Javier Garcia-Frias', 18)}}的其他基金
Collaborative Research: CIF: Small: Beyond Compressed Sensing: Analog Coding for Communications
合作研究:CIF:小型:超越压缩感知:通信模拟编码
- 批准号:
2007754 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FET: CIF: Small: Graph-Based Quantum Error Correcting Codes
FET:CIF:小型:基于图形的量子纠错码
- 批准号:
2007689 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Small: Hybrid analog-digital schemes for joint source-channel coding of digital sources
CIF:小型:数字源联合源通道编码的混合模拟数字方案
- 批准号:
1618653 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Small: Non-Linear Processing and Coding for Compressive Sensing with Applications in Imaging
CIF:小型:用于压缩传感的非线性处理和编码及其在成像中的应用
- 批准号:
0915800 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Turbo Like Codes for Distributed Source and Joint Source-Channel Coding of Correlated Sources
用于分布式源的 Turbo Like 码和相关源的联合源信道编码
- 批准号:
0311014 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Iterative Decoding Schemes For Channels With Memory: Application To Fading Channels
职业:具有记忆的信道的迭代解码方案:在衰落信道中的应用
- 批准号:
0093215 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Understanding the immune response changes to clinical interventions for Epstein-Barr virus infection prior to lymphoma development in children after organ transplants (UNEARTH)
了解器官移植后儿童淋巴瘤发展之前针对 Epstein-Barr 病毒感染的临床干预的免疫反应变化(UNEARTH)
- 批准号:
10755205 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Assessing the Impact of Economic Policies on the Use of Pre-Exposure Prophylaxis in the United States
评估经济政策对美国使用暴露前预防的影响
- 批准号:
10698785 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Examining the Impact of Medicaid's Prior Authorization Requirements for Tobacco Cessation Medications on Tobacco Cessation Medication Prescriptions
检查医疗补助计划对戒烟药物的事先授权要求对戒烟药物处方的影响
- 批准号:
10558258 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
A Digital Twin for Designing Bladder Treatment informed by Bladder Outlet Obstruction Mechanobiology (BOOM)
根据膀胱出口梗阻力学生物学 (BOOM) 设计膀胱治疗的数字孪生
- 批准号:
10659928 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
The impact of prior knowledge on hippocampal-neocortical interactions during memory consolidation
记忆巩固过程中先验知识对海马-新皮质相互作用的影响
- 批准号:
479512 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Operating Grants