MRI: Development of a New Paradigm for Apertureless Near-field Scanning Optical Microscope

MRI:无孔径近场扫描光学显微镜新范例的开发

基本信息

  • 批准号:
    0723118
  • 负责人:
  • 金额:
    $ 37.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

We propose to construct a state-of-the-art tool for imaging materials with high magnification, e.g. visualizing groups of molecules and being able to identify them. Conventional optical microscopes, e.g. a magnifying glass, only allow visualization at micrometer scale, i.e. a fraction of a human hair. This is due to the diffraction limit of visible lights. Using a sharp tip scanning over material surfaces, atomic force microscope enables imaging materials at nanometer level (a small fraction of a human hair), however, provides no information as to what kind of materials (metals, polymers or ions) are under the tip. One mission in the materials science community is to combine the strength of the high resolution in atomic force microscope with the ability to identify materials shown by optical microscope. The new instrument is referred to as a near-filed scanning optical microscope. The task is not trivial due to two competing factors, the need for sufficient light intensity at the imaging site (e.g. using a large probe) and the requirement to make the probe small/sharp to attain optical resolution. This proposal will use a new methods derived from our finding that specific kind of sharp probes glow when one focuses a laser beam at the top tips. The glowing tips provide a "point light source" for imaging and spectroscopy. Preliminary results have demonstrated the feasibility of generating near-filed signals, and we plan to complete the construction of this instrument, to optimize the performance and to demonstrate its applications. Compared with past approaches towards this technique, the proposed method exhibits advantages of high intensity of light, simple to operate, and high resolution. We plan to demonstrate the application and capability of this new instrument by characterization of four classes of important materials: materials containing organic (polymeric) and inorganic (semiconductive) compositions; small inorganic particles with multiple components; carbon nanofibers; and nanomaterials in living cells. The development of this new technique should bring students and postdocs to the forefront of scanning probe microscopy technology and its applications in materials science. The completion of this instrument will enhance the Spectral Imaging Facility (led by the PI) at UCD. We propose a new paradigm for near-field scanning optical microscopy (NSOM). The idea derives from a finding that microfabricated atomic force microscopy (AFM) probes exhibit photoluminescence (PL) upon excitation by a focused laser beam. This PL tip provides a "point light source" for NSOM imaging and spectroscopy. The excitation beam will be focused onto the surface with polarization component perpendicular to the tip axe, as at such we attain laterally localization and enhancement by the AFM tip. Preliminary results have demonstrated the feasibility of generating near-filed signals, and we plan to complete the construction of this instrument, to optimize the performance and to demonstrate its applications. The intrinsic advantages of this approach include: (a) high photon throughput with the ability to tune wavelength; (b) simplicity in detection of near-field optical signals because the PL exhibits different wavelength from the excitation beam; (c) high spatial resolution due to the apertureless AFM platform with sharp probes and effective deflection feedback; and (d) simplicity in operation. Any AFM users should be able to master the operation of this NSOM with a quick training of ca. one week. Development plan includes: (a) design and construction of a low mechanical noise and high stability AFM/NSOM scanning assembly to attain high spatial resolution (10 nm in lateral and 2 nm in normal directions); and (b) attaining true NSOM signal and local spectroscopy information, for which we plan to modify AFM probes to improve the PL efficiency, to build the excitation path and configuration for high near-field enhancement, and to build a high sensitivity and selectivity detection of near field signals. Combining expertise of NSOM instrumentation (Liu), nanofibers and wave guides (Guo), polymer nanocomposite materials (Patten) and nanoparticles with novel applications (Kauzlarich), we plan to use this NSOM for: (a) revealing the protein complex formed at the cell focal adhesion on nanostructures of ligands; (b) investigating the structure and optical property of polymer-nanoparticle composite materials; (c) measuring the structure and wave-guide property of nanowires and nanowire assemblies; and characterizing the structure and optical property of single magnetic core / metal shell particles. The development of this NSOM should bring students and postdocs to the forefront of scanning probe microscopy technology. Students will have a chance to learn and master the skills for the instrumentation of state-of-the-art AFM, optics and detections of optical signals, hardware design for low noise and high stability, electronics for microscopy, and software macros for NSOM. In addition, they will also investigate local interactions between optical excitation and AFM tip, tip-sample interaction, and contrast mechanism for a variety of materials as the initial exploration for NSOM applications in materials research. The completion of this NSOM will enhance the Spectral Imaging Facility (led by the PI) at UCD's organized research unit known as NEAT. The proposed research projects will facilitate further applications of using NSOM for material characterization to reveal the topographic as well as the functionality of the local structures.
我们建议构建一种最先进的高放大倍率材料成像工具,例如可视化分子组并能够识别它们。 传统的光学显微镜,例如放大镜只能在微米尺度(即人类头发的一小部分)进行可视化。 这是由于可见光的衍射极限。 原子力显微镜使用锋利的尖端扫描材料表面,可以对纳米级(人类头发的一小部分)的材料进行成像,但是无法提供尖端下方的材料类型(金属、聚合物或离子)的信息。 材料科学界的一项使命是将原子力显微镜的高分辨率强度与光学显微镜显示的材料识别能力结合起来。 这种新仪器被称为近场扫描光学显微镜。 由于两个相互竞争的因素,该任务并非微不足道,即成像部位需要足够的光强度(例如使用大探头)以及使探头变小/尖锐以获得光学分辨率的要求。 该提案将使用一种新方法,该方法源于我们的发现,即当将激光束聚焦在顶部尖端时,特定类型的锋利探针会发光。 发光尖端为成像和光谱学提供了“点光源”。 初步结果证明了产生近场信号的可行性,我们计划完成该仪器的构建,优化其性能并展示其应用。 与过去的该技术方法相比,所提出的方法具有光强度高、操作简单和高分辨率的优点。 我们计划通过四类重要材料的表征来展示这种新仪器的应用和功能:含有有机(聚合物)和无机(半导体)成分的材料;多种成分的小无机颗粒;碳纳米纤维;和活细胞中的纳米材料。 这项新技术的开发将使学生和博士后走在扫描探针显微镜技术及其在材料科学中应用的最前沿。 该仪器的完成将增强都柏林大学的光谱成像设施(由 PI 领导)。 我们提出了近场扫描光学显微镜(NSOM)的新范例。 这一想法源于一项发现,即微制造原子力显微镜 (AFM) 探针在聚焦激光束激发下表现出光致发光 (PL)。 该 PL 尖端为 NSOM 成像和光谱学提供了“点光源”。 激发光束将聚焦到具有垂直于尖端轴的偏振分量的表面上,这样我们就可以通过 AFM 尖端实现横向定位和增强。 初步结果证明了产生近场信号的可行性,我们计划完成该仪器的构建,优化其性能并展示其应用。 这种方法的内在优点包括:(a)高光子吞吐量,并且能够调谐波长; (b) 近场光信号检测简单,因为 PL 表现出与激发光束不同的波长; (c) 由于无孔径 AFM 平台具有尖锐的探针和有效的偏转反馈,因此具有高空间分辨率; (d) 操作简单。 任何 AFM 用户都应该能够通过约 10 分钟的快速培训来掌握该 NSOM 的操作。一周。 开发计划包括: (a) 设计和构建低机械噪声和高稳定性 AFM/NSOM 扫描组件,以获得高空间分辨率(横向 10 nm,法向 2 nm); (b) 获得真实的 NSOM 信号和局部光谱信息,为此我们计划修改 AFM 探针以提高 PL 效率,构建高近场增强的激发路径和配置,并构建高灵敏度和选择性检测近场信号。 将 NSOM 仪器 (Liu)、纳米纤维和波导 (Guo)、聚合物纳米复合材料 (Patten) 和纳米粒子的专业知识与新颖的应用 (Kauzlarich) 相结合,我们计划使用该 NSOM 来: (a) 揭示在配体纳米结构上的细胞焦点粘附; (b) 研究聚合物-纳米颗粒复合材料的结构和光学性能; (c)测量纳米线和纳米线组件的结构和波导特性;表征单个磁核/金属壳颗粒的结构和光学性质。该 NSOM 的开发应该使学生和博士后走在扫描探针显微镜技术的最前沿。 学生将有机会学习和掌握最先进的 AFM 仪器、光学和光信号检测、低噪声和高稳定性硬件设计、显微镜电子学以及 NSOM 软件宏的技能。 此外,他们还将研究光学激发与AFM针尖之间的局部相互作用、针尖-样品相互作用以及各种材料的对比机制,作为NSOM在材料研究中应用的初步探索。 该 NSOM 的完成将增强 UCD 组织的研究单位 NEAT 的光谱成像设施(由 PI 领导)。 拟议的研究项目将促进使用 NSOM 进行材料表征的进一步应用,以揭示局部结构的地形和功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gang-Yu Liu其他文献

Gang-Yu Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gang-Yu Liu', 18)}}的其他基金

Investigation of Reactive Radical Intermediates for the Development of X-ray Photonanochemistry
X射线光纳米化学发展中活性自由基中间体的研究
  • 批准号:
    1905338
  • 财政年份:
    2019
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Controlled Molecular Assembly for 3D Nanoprinting
用于 3D 纳米打印的受控分子组装
  • 批准号:
    1808829
  • 财政年份:
    2018
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Continuing Grant
Three Dimensional Nanolithography via Combined Scanning Near-Field Optical Microscopy and Photopolymerization
通过扫描近场光学显微镜和光聚合相结合的三维纳米光刻
  • 批准号:
    1413708
  • 财政年份:
    2014
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Chemical and Nanoengineering Regulation of Inter-molecular Electron Transport in Organic Semiconductor Thin Films
有机半导体薄膜分子间电子传输的化学和纳米工程调控
  • 批准号:
    1104260
  • 财政年份:
    2011
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Continuing Grant
Size-Dependent Surface Chemistry at Nanometer Scale
纳米尺度尺寸依赖性表面化学
  • 批准号:
    0809977
  • 财政年份:
    2008
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Continuing Grant
MRI: Phase I of an Advanced Spectromicroscopy Facility: Acquisition of a Combined Confocal Optical and Atomic Force Microscope, and an Enhanced FTIR Imaging Microscope
MRI:先进光谱显微镜设施的第一阶段:购买组合式共焦光学和原子力显微镜以及增强型 FTIR 成像显微镜
  • 批准号:
    0421521
  • 财政年份:
    2004
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Position and Orientation Specific Immobilization of Antibodies via Nanofabrication and Polyvalent Interactions
通过纳米加工和多价相互作用对抗体进行位置和方向特异性固定
  • 批准号:
    0244830
  • 财政年份:
    2003
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Continuing Grant
NER: Stepwise Contraction Adsorption Nanolithography, SCAN: A New Approach Towards Simple, Inexpensive and High Throughput Nanofabrication
NER:逐步收缩吸附纳米光刻,SCAN:一种实现简单、廉价和高通量纳米制造的新方法
  • 批准号:
    0304345
  • 财政年份:
    2003
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
CAREER: Development of Nanofabrication Techniques for Self-assembled Monolayer Based Biosensors
职业:自组装单层生物传感器纳米制造技术的开发
  • 批准号:
    9733400
  • 财政年份:
    1998
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Continuing Grant
A Combined Chemical and Microscopic Approach to Nanometer Scale Materials
纳米级材料的化学和微观相结合的方法
  • 批准号:
    9510402
  • 财政年份:
    1995
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant

相似国自然基金

江苏典型乡村转型发展的动态过程与驱动机理研究:融合多尺度治理的新内生发展视角
  • 批准号:
    42371205
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
新免疫检查点CD97/CD55在甲状腺乳头状癌发生发展中的作用及机制
  • 批准号:
    82303300
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新候选基因NAALAD2在高度近视发生发展过程中的作用机理研究
  • 批准号:
    82301223
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
HERVs来源的新的lncRNA——HILAL在肝癌发展中的作用及分子机制研究
  • 批准号:
    82303528
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新物质主义视角下旅游商品带动地方发展的格局、过程及作用机制
  • 批准号:
    42371235
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

Development of multinuclear MRI for image guided therapy of glioma patients
开发用于神经胶质瘤患者图像引导治疗的多核 MRI
  • 批准号:
    10655918
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
Air Pollution, Multidimensional Behavior, and Neuroimaging in Children with Neurodevelopmental Disorders
空气污染、多维行为和神经发育障碍儿童的神经影像学
  • 批准号:
    10644622
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
Pulmonary Vascular Development in Single Ventricle Heart Disease: A Longitudinal Biomarker Approach
单心室心脏病的肺血管发育:纵向生物标志物方法
  • 批准号:
    10591167
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
Rapid low-cost production of contrast agents for metabolic imaging
快速低成本生产代谢成像造影剂
  • 批准号:
    10572052
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
Nanodisc Platform for 19F-MRI
用于 19F-MRI 的 Nanodisc 平台
  • 批准号:
    10746675
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了