Geometry and Topology in the Presence of Lower Curvature Bounds

存在较低曲率界的几何和拓扑

基本信息

  • 批准号:
    0706791
  • 负责人:
  • 金额:
    $ 36.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-15 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

As natural vast extensions of the classical Euclidean and spherical geometries, geometry of manifolds with non-negative or positive curvature has played a central role since the beginning of global Riemannian geometry. This role has only been amplified in the last few decades since spaces with non-negative or positive curvature arise naturally in quite general contexts, including limit processes. In this generality, positively curved spaces (up to scaling) play exactly the same role as unit spheres do to smooth Riemannian manifolds. Our understanding of low dimensional non-negatively curved spaces also played a pivotal role in the recent solution of the famous Poincare and geometrization conjectures. In higher dimensions relatively little is known in general about manifolds or spaces with non-negative or positive curvature. Also only a few constructions and a modest number of examples are known. Motivated by the fact that all known examples come from group constructions and have fairly large groups of symmetries, one of the primary aims of this proposal is to expand our understanding of manifolds with positive or non-negative curvature by describing or possibly even classifying those with large symmetry groups. This program which combines geometry, topology and representation theory has already gained considerable momentum, and has resulted in several classification results as well as in the construction of many new manifolds with non-negative curvature, and new promising candidates for positive curvature.The sphere, the Euclidean space, and the hyperbolic space are exactly the (simply connected) spaces characterized by having constant curvature and also by having maximal symmetry group. Spaces being more curved than these spaces are characterized geometrically by the property that geodesic triangles (triangles with shortest side lengths) are "fatter" than in the constant curvature space. For example a space has non-negative curvature if geodesic triangles in the space are "fatter" than in the Euclidean plane (where the sum of angles is 180 degrees). Such spaces play a fundamental role in geometry and form an extension of classical Riemannian geometry, which deals with smooth and regular spaces of this type. The ones of positive, non-negative curvature, or even "almost non- negative" curvature play a particular role and their investigations are essential to all of them. As in many part of physics our purpose in this proposal is to analyze and ultimately describe positively curved spaces and non-negatively curved spaces where large groups of symmetries are present (as is the case for the classical constant curvature model spaces above). These investigations will also provide "models" for analyzing "almost non-positively curved spaces" and thereby give new insights to the structure of all spaces with a lower curvature bound and possibly yield general long sought after restrictions on manifolds with non-negative curvature via limit processes.
作为经典欧几里得和球形几何形状的自然巨大扩展,自全球Riemannian几何形状开始以来,具有非阴性或正曲率的流形的几何形状起着核心作用。由于在过去的几十年中,这种角色仅在过去的几十年中被放大,因为具有非负或正曲率的空间在相当一般的环境中自然出现,包括极限过程。 在这种通用性中,正面弯曲的空间(直至缩放)的作用与单位球的作用完全相同,以使Riemannian歧管平滑。我们对低维非弯曲空间的理解在最近的著名庞加罗和几何化猜想的解决方案中也起着关键作用。在较高的维度中,关于非阴性或正曲率的歧管或空间,相对较少知道。同样只有少数几个结构和适度的示例。这一事实是,所有已知的例子都来自群体结构,并且具有相当大的对称性,该提案的主要目的之一是通过描述或可能通过对具有较大对称群体的人进行分类或可能对具有积极或非负曲率的流形进行了解。该程序结合了几何,拓扑和表示理论已经获得了相当大的动力,并且在构建许多具有非负曲率的新歧管以及积极曲率的新候选者的构建中,构造了球体的新候选者。比这些空间更弯曲的空间以几何表征的特征是通过大地三角形(侧面长度最短的三角形)比在恒定曲率空间中“胖”的特性。例如,如果空间中的大地三角形比欧几里得平面(其中角度为180度),则空间具有非负曲率。这样的空间在几何形状中起着基本作用,并形成了经典的riemannian几何形状的扩展,该几何形状涉及这种类型的平滑和规则空间。积极的,非负曲率甚至“几乎非阴性”曲率起着特定作用,他们的研究对所有人都是必不可少的。在物理学的许多部分中,我们在该建议中的目的是分析并最终描述存在大量对称性的正面弯曲空间和非弯曲空间(就像上面的经典恒定曲率模型空间一样)。这些研究还将提供“模型”,以分析“几乎非裂开的弯曲空间”,从而为所有曲率结合较低的空间的结构提供了新的见解,并可能通过极限过程对具有非阴性曲率的流形产生一般性的限制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karsten Grove其他文献

Karsten Grove的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karsten Grove', 18)}}的其他基金

Bruhat-Tits Geometry and Nonnegative Curvature
Bruhat-Tits 几何和非负曲率
  • 批准号:
    1509162
  • 财政年份:
    2015
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Continuing Grant
Conference on Metric Geometry and Applications
度量几何及其应用会议
  • 批准号:
    1265610
  • 财政年份:
    2013
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Standard Grant
The 2013 Graduate Student Topology and Geometry Conference
2013年研究生拓扑与几何会议
  • 批准号:
    1307681
  • 财政年份:
    2013
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Standard Grant
Geometry and Topology in the Presence of Lower Curvature Bounds
存在较低曲率界的几何和拓扑
  • 批准号:
    1209387
  • 财政年份:
    2012
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Standard Grant
Workshop on Interactions between Geometry and Analysis
几何与分析之间的相互作用研讨会
  • 批准号:
    1041141
  • 财政年份:
    2010
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Standard Grant
Geometry and Topology in the Presence of Lower Curvature Bounds
存在较低曲率界的几何和拓扑
  • 批准号:
    0941615
  • 财政年份:
    2009
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Continuing Grant
Geometry and Topology of Riemannian Manifolds
黎曼流形的几何和拓扑
  • 批准号:
    0204671
  • 财政年份:
    2002
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Continuing Grant
Geometry and Topology of Riemannian Manifolds
黎曼流形的几何和拓扑
  • 批准号:
    9971648
  • 财政年份:
    1999
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometry and Topology of Riemannian Manifolds
数学科学:黎曼流形的几何和拓扑
  • 批准号:
    9626375
  • 财政年份:
    1996
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometry and Topology of Riemannian Manifolds
数学科学:黎曼流形的几何和拓扑
  • 批准号:
    9303491
  • 财政年份:
    1993
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于高阶读数的拓扑关联结构域识别和比对方法研究
  • 批准号:
    62372156
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大功率DLA模块液冷微通道力热耦合机理与多要素协同拓扑优化研究
  • 批准号:
    52306111
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
扭转双层光子系统非厄米拓扑效应研究
  • 批准号:
    12304340
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机非线性复杂系统的拓扑结构及其在交叉学科中的应用
  • 批准号:
    12375034
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
染色质拓扑绝缘子介导的Linc-OP转录紊乱在老年相关骨质疏松症发生中的作用与机制研究
  • 批准号:
    82371600
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
  • 批准号:
    2341204
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了