Problems in several complex variables and partial differential equations
多个复变量和偏微分方程的问题
基本信息
- 批准号:0654120
- 负责人:
- 金额:$ 10.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator will study several basic questions concerning regularity properties of solutions to the Cauchy-Riemann equations in multidimensional complex analysis, and in the process he will clarify the relationship between certain natural operators associated with a domain in n-dimensional complex space and their counterparts on the boundary of that domain. One part of this project will address maximal hypoellipticity for the d-bar Neumann problem and analyze the problem of transferring Lp or Holder estimates from the interior to the boundary for (smooth, bounded) pseudoconvex domains with subelliptic boundary Laplacian. The project will also focus on the more degenerate situation when subellipticity does not hold (i.e., will investigate regularity issues for the d-bar Neumann problem and boundary Laplacian on weakly pseudoconvex domains), particularly the connections among global (ir)regularity, exact regularity, and a priori estimates. This project will make a significant contribution to the answer of the following broad question: How are the regularity properties of solutions to a system of partial differential equations (with prescribed boundary conditions) on a given domain related to the ones for an associated system on the boundary? Some of the methods introduced by the principal investigator should have applications to systems of partial differential equations that arise in the physical sciences. The study of the interior and tangential d-bar problems in several complex variables has in the past often led to substantial advances in analysis, such as the discovery of the first examples of local nonsolvability of linear partial differential equations and the development of pseudodifferential operators. Moreover, such problems have many connections to harmonic analysis and algebraic geometry. By clarifying some poorly understood aspects of partial differential equations that arise in complex analysis, this research may inspire new ties to other branches of mathematics and science.
首席研究者将研究有关多维复杂分析中解决方案解决方案的规律性特性的几个基本问题,在此过程中,他将阐明与n维复杂空间中与域与该域边界相关的某些自然操作员之间的关系。该项目的一部分将解决D-BAR Neumann问题的最大性低纤维化,并分析LP或持有人估计的问题,从内部到边界,用于(平滑,有限的)伪convex结构域,具有下层状边界边界laplacian。该项目还将集中于较堕落的情况时(即,将调查D-Bar Neumann问题的规律性问题,而边界Laplacian在弱伪convex域上,尤其是全球(IR)规律性,确切规律性和先验估计的联系。该项目将为以下广泛问题的答案做出重大贡献:在与边界上关联系统相关的给定域中,解决方程组(带有规定边界条件)的解决方案的规律性属性如何?主要研究者引入的一些方法应在物理科学中出现的部分微分方程系统应用。过去几个复杂变量中内部和切向D-bar问题的研究通常会导致分析的重大进展,例如发现线性部分微分方程的局部不辨别性的第一个例子以及伪差操作员的发展。此外,这些问题与谐波分析和代数几何形状有许多联系。通过澄清一些复杂分析中出现的部分微分方程的一些知识,这项研究可能会激发与数学和科学其他分支的新联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Koenig其他文献
Kenneth Koenig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Koenig', 18)}}的其他基金
Conference: Midwest Several Complex Variables Conference at Ohio State University
会议:俄亥俄州立大学中西部多个复杂变量会议
- 批准号:
2302532 - 财政年份:2023
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
Problems in harmonic analysis and several complex variables
调和分析中的问题和几个复变量
- 批准号:
0457500 - 财政年份:2004
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
Problems in harmonic analysis and several complex variables
调和分析中的问题和几个复变量
- 批准号:
0400505 - 财政年份:2004
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
Sharp Sobolev and Holder estimates on domains of finite type
Sharp Sobolev 和 Holder 对有限类型域的估计
- 批准号:
0071583 - 财政年份:2000
- 资助金额:
$ 10.58万 - 项目类别:
Fellowship Award
相似国自然基金
线性或非线性约束下一些排序问题的复杂性和算法
- 批准号:11801589
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
函数逼近论的一些极值问题与多元线性问题的可处理性
- 批准号:11471043
- 批准年份:2014
- 资助金额:65.0 万元
- 项目类别:面上项目
Gröbner-Shirshov基与代数系统复杂度问题的一些研究
- 批准号:11401224
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
复杂网络中的一些深层次的问题
- 批准号:61273211
- 批准年份:2012
- 资助金额:67.0 万元
- 项目类别:面上项目
高亏格复杂几何模型中一些核心问题的研究
- 批准号:61173102
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
- 批准号:
1300867 - 财政年份:2013
- 资助金额:
$ 10.58万 - 项目类别:
Continuing Grant
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
- 批准号:
1412384 - 财政年份:2013
- 资助金额:
$ 10.58万 - 项目类别:
Continuing Grant
Geometric and Analytic Problems in Several Complex Variables and Partial Differential Equations
多复变量和偏微分方程的几何和解析问题
- 批准号:
0701070 - 财政年份:2007
- 资助金额:
$ 10.58万 - 项目类别:
Continuing Grant
Geometric and Analytic Problems in Several Complex Variables
多个复杂变量的几何和解析问题
- 批准号:
0400880 - 财政年份:2004
- 资助金额:
$ 10.58万 - 项目类别:
Continuing Grant
Problems in harmonic analysis and several complex variables
调和分析中的问题和几个复变量
- 批准号:
0457500 - 财政年份:2004
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant