EMSW21-RTG-Program in low-dimensional topology and its applications

低维拓扑中的EMSW21-RTG-程序及其应用

基本信息

  • 批准号:
    0636643
  • 负责人:
  • 金额:
    $ 124.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0636643Principal Investigator: Alan W. Reid, Robert E. Gompf,Cameron M. Gordon, John E. LueckeThis RTG proposal is focused on training in low-dimensionaltopology and its applications. The study of low-dimensionalmanifolds has become one of the central areas of researchactivity in mathematics. The PI's have an establishedtrack-record of research accomplishments in several differentareas of low-dimensional topology; for example knot theory, 3 and4-manifold topology, hyperbolic manifolds and symplectictopology. The project will also allow the PI's to continue theirtraining of postdocs and students. The subject of this RTGProposal interacts with several other branches of mathematics aswell as the applied sciences. It therefore provides fertileground for research, education and training experiences at alllevels.One of the main features of the proposal is to build, andelevate, the successful structure for training and educationcurrently in place in the Department of Mathematics. However, animportant new component of our proposal is training forinterdisciplinary research. This will afford postdocs, graduateand undergraduate students educational and training experiencesdifferent from the traditional ones available at present. Wetherefore aim to provide a framework that supports education andtraining by instruction in the traditional sense, and alsoprovide opportunity for training experiences in applications oftopology in the physical and biological sciences. As part of thislatter effort the project will promote interactions withscientists studying knotting phenomena in DNA and biomedicalmathematics. As part of our outreach efforts, we will instigatea public lecture series that will raise the profile and level ofawareness of the role of topology in other sciences in theUniversity and local community.
Abstractaward:DMS-0636643原理研究者:Alan W. Reid,Robert E. Gompf,Cameron M. Gordon,John E. Lueckethis RTG提案专注于低维度学及其应用中的培训。 对低维曼群的研究已成为数学研究效率的中心领域之一。 PI在低维拓扑的几个不同方案中拥有既定的研究成就;例如结理论,3和4个manifold拓扑,双曲线歧管和符号学。 该项目还将允许PI继续对博士后和学生进行培训。该RTGProposal的主题与应用科学的其他几个数学分支相互作用。 因此,它为Alllevel的研究,教育和培训经验提供了肥沃的地面。该提案的主要特征之一是在数学系建立,Andelevate,这是成功培训和教育的成功结构。但是,我们提案的动画新组成部分是培训Interdogedrinary Research的培训。 这将提供博士后,毕业的本科生教育和培训经验与目前可用的传统经验不同。 因此,旨在提供一个框架,以传统意义上的教学来支持教育和训练,以及在物理和生物科学中培训应用体验中培训经验的机会。作为此措施的一部分,该项目将促进与研究DNA和生物医学仪器中研究打结现象的互动。 作为我们推广工作的一部分,我们将启动公开讲座系列,这些系列将提高拓扑在大学和本地社区其他科学中作用的概况和水平。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Reid其他文献

High-Sensitivity Cardiac Troponin on Presentation to Rule Out Myocardial Infarction
高敏心肌肌钙蛋白检查可排除心肌梗塞
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills
  • 通讯作者:
    N. Mills
High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome
疑似急性冠状动脉综合征患者就诊时的高敏心肌肌钙蛋白 I
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anoop S. V. Shah;A. Anand;Y. Sandoval;K. K. Lee;Stephen W. Smith;P. Adamson;A. Chapman;Timothy Langdon;D. Sandeman;Amar Vaswani;F. Strachan;A. Ferry;A. Stirzaker;Alan Reid;A. Gray;P. Collinson;D. McAllister;F. Apple;D. Newby;N. Mills
  • 通讯作者:
    N. Mills
High-sensitivity cardiac troponin on presentation to rule out myocardial infarction: a stepped-wedge cluster randomised controlled trial
高敏心肌肌钙蛋白可排除心肌梗死:阶梯楔形集群随机对照试验
  • DOI:
    10.1101/2020.09.06.20189308
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills
  • 通讯作者:
    N. Mills
Optimal myocardial protection strategy for coronary artery bypass grafting without cardioplegia: prospective randomised trial.
不使用心脏停搏液的冠状动脉旁路移植术的最佳心肌保护策略:前瞻性随机试验。
High-Sensitivity Cardiac Troponin and the Diagnosis of Myocardial Infarction in Patients with Renal Impairment.
高敏心肌肌钙蛋白与肾损伤患者心肌梗死的诊断。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    P. Gallacher;E. Miller;Anoop S. V. Shah;T. Farrah;N. Halbesma;James P. Blackmur;A. Chapman;P. Adamson;A. Anand;F. Strachan;A. Ferry;K. K. Lee;C. Berry;I. Findlay;A. Cruickshank;Alan Reid;A. Gray;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;C. Keerie;C. Weir;D. Newby;N. Mills;N. Dhaun
  • 通讯作者:
    N. Dhaun

Alan Reid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Reid', 18)}}的其他基金

Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
Representations and Rigidity
表述和刚性
  • 批准号:
    1812397
  • 财政年份:
    2018
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
  • 批准号:
    1755177
  • 财政年份:
    2017
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
Geometric Group Theory and Low-Dimensional Topology: Recent Connections and Advances
几何群论和低维拓扑:最新联系和进展
  • 批准号:
    1624301
  • 财政年份:
    2016
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
Workshop on mapping class groups of surfaces and outer automorphism groups of free groups
曲面类群映射和自由群外自同构群研讨会
  • 批准号:
    1542752
  • 财政年份:
    2015
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
  • 批准号:
    1463740
  • 财政年份:
    2015
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
Moduli spaces, Extremality and Global Invariants
模空间、极值和全局不变量
  • 批准号:
    1305448
  • 财政年份:
    2013
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
Covering spaces of 3-manifolds and representations of their fundamental groups
3-流形的覆盖空间及其基本群的表示
  • 批准号:
    1105002
  • 财政年份:
    2011
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
Interactions between the geometry of Banach spaces and other areas
Banach 空间的几何形状与其他区域之间的相互作用
  • 批准号:
    0968813
  • 财政年份:
    2010
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
Finite covers of hyperbolic 3-manifolds
双曲3流形的有限覆盖
  • 批准号:
    0805828
  • 财政年份:
    2008
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant

相似海外基金

RTG: Program in Computation- and Data-Enabled Science
RTG:计算和数据支持科学项目
  • 批准号:
    2136228
  • 财政年份:
    2022
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
RTG: An Interdisciplinary Research Training Program in Applied Mathematics, Computational Science, and Mathematical Physics
RTG:应用数学、计算科学和数学物理的跨学科研究培训项目
  • 批准号:
    1345013
  • 财政年份:
    2014
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
EMSW21-RTG in Algebra and related fields at UCLA: innovations in a successful program
加州大学洛杉矶分校代数及相关领域的 EMSW21-RTG:成功项目的创新
  • 批准号:
    0838697
  • 财政年份:
    2009
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
EMSW21-RTG: Notre Dame's Mathematical Logic Program
EMSW21-RTG:圣母大学的数学逻辑程序
  • 批准号:
    0838506
  • 财政年份:
    2009
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
EMSW21-RTG - Program in Applied and Computational Analysis
EMSW21-RTG - 应用和计算分析程序
  • 批准号:
    0636586
  • 财政年份:
    2007
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了