GOALI: Stochastic Behavior in Polymer Optical Fiber Drawing

目标:聚合物光纤拉丝中的随机行为

基本信息

  • 批准号:
    0626533
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTNational Science FoundationProposal Number: CTS-0626533Principal Investigator: Emery, AshleyAffiliation: University of WashingtonProposal Title: GOALI: Stochastic Behavior in Polymer Optical Fiber DrawingHigh speed transmission in optical fibers can be achieved by step or graded refractive indices or by the new area of photonic bandgap fibers based on using an internal air core. These fibers offer a wide range of exciting and unique optical performance characteristics including pulse amplification, frequency conversion, third harmonic generation, and lasing. They also offer the potential for extremely low signal attenuation and negligible chromatic dispersion. Photonic bandgap structures can also be designed and utilized for a wide range of the electromagnetic spectrum, from visible to microwave frequencies, due to the tremendous design flexibility that is possible in choosing virtually any hole size and spacing, as appropriate for the desired optical wavelengths. To date, the vast majority of photonic bandgap fiber development has been carried out using silica glass. This project proposes to tap the virtually unexplored area of photonic bandgap polymer fiber and to focus in particular on the transport phenomena associated with fabrication of these fibers. The challenge for development of photonic bandgap fiber is that the optical quality and performance of the fiber is highly dependent on the manufacturing process. In particular, the development of photonic bandgap fiber is crucially dependent on the ability to maintain accurate control of the hole diameters and spacing. Polymer optical fiber (POF) development has been hindered by insufficient knowledge of the fundamental transport phenomena during manufacturing. Several key findings from our previous research have resulted in a greatly improved understanding of the fundamental transport phenomena during POF drawing, and an equally dramatic reduction in diameter variation. The proposed research is highly collaborative and will involve automated birefringence imaging of photonic bandgap POF as it is being drawn in order to measure the degree of molecular orientation, depending on the draw process conditions. Fiber drawing experiments will be carried out at the University of Washington along with surface characterization and dimensional tolerances of the photonic bandgap fiber. The draw process for photonic bandgap fiber will be numerically simulated with a focus on the effects of uncertainties in material properties (e.g., surface tension, geometry, draw conditions, and convective heating). Tests will also be carried out to assess the optical performance of the photonic bandgap POF. With respect to Broader Impacts, the co-PIs of this proposal are strongly committed to the integration of research and education and to broadening the participation of underrepresented groups. Each of the co-PIs has demonstrated a continuing commitment through advising undergraduate research, developing hands-on workshops for K-12 students, and leading activities that give students an opportunity to experience the excitement of discovery through disciplined study and research. The application of photonic bandgap fiber is entirely new to mechanical engineering, and it therefore offers a wonderful opportunity to attract students to engineering research in the fields of polymer processing, fluid dynamics, and heat transfer.
摘要基础科学基金会质量编号:CTS-0626533PRINCIPAL研究者:Emery,AshleyAffiliation:华盛顿大学 - 大学 - 靶标:目标:聚合物光纤光纤速度传输光学纤维中的随机行为可以逐步通过使用Photonic bandibibibibibibibibibap on New Sirce and Internal Firectial in Northeral Firace逐步实现。这些纤维提供了各种令人兴奋和独特的光学性能特性,包括脉冲放大,频率转换,第三个谐波产生和激光。它们还提供了极低的信号衰减和可忽略不计的色度分散的潜力。光子带隙结构还可以设计和用于广泛的电磁频谱,从可见光到微波频率,由于巨大的设计灵活性,这些灵活性在选择几乎任何孔尺寸和间距方面都是可能的,适用于所需的光学波长。迄今为止,已经使用二氧化硅玻璃进行了绝大多数光子带纤维的发育。 该项目建议利用光子带隙聚合物纤维的几乎未开发的区域,并专门针对与这些纤维制造相关的传输现象。 光子带镜纤维开发的挑战在于,光纤的光学质量和性能高度取决于制造过程。特别是,光子带隙纤维的发展至关重要取决于保持对孔直径和间距的准确控制的能力。由于对制造过程中基本运输现象的了解不足,聚合物光纤(POF)的开发受到了阻碍。 我们先前研究的一些关键发现导致对POF图期间基本运输现象的理解得到了极大的了解,并且直径变化也同样显着降低。 拟议的研究是高度协作的,将涉及光子带POF的自动双发性成像,以根据抽取过程条件来测量分子取向的程度。纤维图实验将在华盛顿大学进行表面表征和光子带隙纤维的尺寸公差。光子带隙纤维的拉动过程将在数值上模拟,重点是材料特性(例如,表面张力,几何,绘制条件和对流加热)的不确定性影响。还将进行测试以评估光子带隙POF的光学性能。 关于更广泛的影响,该提案的共同点强烈致力于研究和教育的整合,并扩大了代表性不足的群体的参与。每一个共同案例都通过为本科研究,为K-12学生开展动手讲习班以及领导活动,使学生有机会通过纪律研究和研究使学生兴奋,这表明了持续的承诺。光子带隙纤维的应用是机械工程的全新,因此为吸引学生在聚合物处理,流体动力学和传热领域的工程研究提供了一个绝佳的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashley Emery其他文献

Black Dots: Microcontact-Printed, Reference-Free Traction Force Microscopy
黑点:微接触印刷、无参考牵引力显微镜
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin M. Beussman;Molly Y. Mollica;Andrea Leonard;Jeffrey Miles;John Hocter;Zizhen Song;Moritz Stolla;Sangyoon J. Han;Ashley Emery;W. Thomas;N. Sniadecki
  • 通讯作者:
    N. Sniadecki

Ashley Emery的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashley Emery', 18)}}的其他基金

Workshop on Uncertainty and Sensitivity for Design
设计的不确定性和敏感性研讨会
  • 批准号:
    0736468
  • 财政年份:
    2007
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Joint Russian/American Study in Inverse Methods
俄罗斯/美国联合逆向方法研究
  • 批准号:
    9322215
  • 财政年份:
    1994
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Research Equipment to Measure Solar, Luminous, and Longwave Radiation for Building Research Studies
用于测量建筑研究中的太阳、光和长波辐射的研究设备
  • 批准号:
    8511214
  • 财政年份:
    1985
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

多尺度随机动力系统的渐近行为
  • 批准号:
    12301223
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机几何的非合作集群一体化估计与行为语义认知研究
  • 批准号:
    62376147
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
α-稳定过程驱动的随机微分方程的极限行为研究
  • 批准号:
    12301175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机驾驶行为下基于强化学习与启发式融合的自动驾驶挑战场景生成
  • 批准号:
    52302504
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于行为偏好的保险需求与投资消费随机最优控制问题研究
  • 批准号:
    12371478
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Neural and behavioral mechanisms of song learning in zebra finches
斑胸草雀鸣叫学习的神经和行为机制
  • 批准号:
    10678601
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Single-molecule Investigation of the Interaction Between MeCP2 and Chromatin
MeCP2 与染色质相互作用的单分子研究
  • 批准号:
    10606104
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
A latent variable model for quantifying social behavior in rodents
用于量化啮齿类动物社会行为的潜变量模型
  • 批准号:
    10535865
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
Long-term behavior of stochastic models on lattices with spatio-temporal interactions
具有时空相互作用的格子上随机模型的长期行为
  • 批准号:
    22K03333
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic Models with Random Times: Long-Time Behavior and Large Population Limit
具有随机时间的随机模型:长时间行为和大群体限制
  • 批准号:
    2206038
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了