GOALI: Stochastic Behavior in Polymer Optical Fiber Drawing

目标:聚合物光纤拉丝中的随机行为

基本信息

  • 批准号:
    0626533
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTNational Science FoundationProposal Number: CTS-0626533Principal Investigator: Emery, AshleyAffiliation: University of WashingtonProposal Title: GOALI: Stochastic Behavior in Polymer Optical Fiber DrawingHigh speed transmission in optical fibers can be achieved by step or graded refractive indices or by the new area of photonic bandgap fibers based on using an internal air core. These fibers offer a wide range of exciting and unique optical performance characteristics including pulse amplification, frequency conversion, third harmonic generation, and lasing. They also offer the potential for extremely low signal attenuation and negligible chromatic dispersion. Photonic bandgap structures can also be designed and utilized for a wide range of the electromagnetic spectrum, from visible to microwave frequencies, due to the tremendous design flexibility that is possible in choosing virtually any hole size and spacing, as appropriate for the desired optical wavelengths. To date, the vast majority of photonic bandgap fiber development has been carried out using silica glass. This project proposes to tap the virtually unexplored area of photonic bandgap polymer fiber and to focus in particular on the transport phenomena associated with fabrication of these fibers. The challenge for development of photonic bandgap fiber is that the optical quality and performance of the fiber is highly dependent on the manufacturing process. In particular, the development of photonic bandgap fiber is crucially dependent on the ability to maintain accurate control of the hole diameters and spacing. Polymer optical fiber (POF) development has been hindered by insufficient knowledge of the fundamental transport phenomena during manufacturing. Several key findings from our previous research have resulted in a greatly improved understanding of the fundamental transport phenomena during POF drawing, and an equally dramatic reduction in diameter variation. The proposed research is highly collaborative and will involve automated birefringence imaging of photonic bandgap POF as it is being drawn in order to measure the degree of molecular orientation, depending on the draw process conditions. Fiber drawing experiments will be carried out at the University of Washington along with surface characterization and dimensional tolerances of the photonic bandgap fiber. The draw process for photonic bandgap fiber will be numerically simulated with a focus on the effects of uncertainties in material properties (e.g., surface tension, geometry, draw conditions, and convective heating). Tests will also be carried out to assess the optical performance of the photonic bandgap POF. With respect to Broader Impacts, the co-PIs of this proposal are strongly committed to the integration of research and education and to broadening the participation of underrepresented groups. Each of the co-PIs has demonstrated a continuing commitment through advising undergraduate research, developing hands-on workshops for K-12 students, and leading activities that give students an opportunity to experience the excitement of discovery through disciplined study and research. The application of photonic bandgap fiber is entirely new to mechanical engineering, and it therefore offers a wonderful opportunity to attract students to engineering research in the fields of polymer processing, fluid dynamics, and heat transfer.
摘要美国国家科学基金会提案编号:CTS-0626533 首席研究员:Emery, Ashley 所属机构:华盛顿大学提案标题:GOALI:聚合物光纤拉丝中的随机行为光纤中的高速传输可以通过步进或分级折射率或通过光子带隙的新区域来实现基于使用内部空气芯的纤维。这些光纤具有多种令人兴奋且独特的光学性能特性,包括脉冲放大、频率转换、三次谐波生成和激光发射。它们还具有极低信号衰减和可忽略不计的色散的潜力。光子带隙结构还可以设计和用于从可见光到微波频率的广泛电磁频谱,因为可以根据所需的光学波长选择几乎任何孔尺寸和间距,从而具有巨大的设计灵活性。迄今为止,绝大多数光子带隙光纤的开发都是使用石英玻璃进行的。 该项目建议开发光子带隙聚合物光纤几乎未开发的领域,并特别关注与这些光纤制造相关的传输现象。 光子带隙光纤开发面临的挑战是光纤的光学质量和性能高度依赖于制造工艺。特别是,光子带隙光纤的发展关键取决于保持精确控制孔径和间距的能力。由于对制造过程中的基本传输现象了解不足,聚合物光纤 (POF) 的发展受到了阻碍。 我们之前研究的几个关键发现极大地提高了对 POF 拉丝过程中基本传输现象的理解,并且直径变化同样显着减少。 拟议的研究是高度协作的,将涉及光子带隙塑料光纤在拉制过程中的自动双折射成像,以测量分子取向程度,具体取决于拉制工艺条件。光纤拉丝实验以及光子带隙光纤的表面表征和尺寸公差将在华盛顿大学进行。光子带隙光纤的拉制过程将进行数值模拟,重点关注材料特性不确定性的影响(例如表面张力、几何形状、拉制条件和对流加热)。还将进行测试以评估光子带隙 POF 的光学性能。 就更广泛的影响而言,该提案的共同负责人坚定致力于研究和教育的整合,并扩大代表性不足群体的参与。每位联合 PI 都通过为本科生研究提供建议、为 K-12 学生举办实践研讨会以及领导活动,让学生有机会通过严谨的学习和研究体验发现的兴奋感,展现了持续的承诺。光子带隙光纤的应用对于机械工程来说是全新的,因此它为吸引学生进行聚合物加工、流体动力学和传热领域的工程研究提供了绝佳的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashley Emery其他文献

Black Dots: Microcontact-Printed, Reference-Free Traction Force Microscopy
黑点:微接触印刷、无参考牵引力显微镜
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin M. Beussman;Molly Y. Mollica;Andrea Leonard;Jeffrey Miles;John Hocter;Zizhen Song;Moritz Stolla;Sangyoon J. Han;Ashley Emery;W. Thomas;N. Sniadecki
  • 通讯作者:
    N. Sniadecki

Ashley Emery的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashley Emery', 18)}}的其他基金

Workshop on Uncertainty and Sensitivity for Design
设计的不确定性和敏感性研讨会
  • 批准号:
    0736468
  • 财政年份:
    2007
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Joint Russian/American Study in Inverse Methods
俄罗斯/美国联合逆向方法研究
  • 批准号:
    9322215
  • 财政年份:
    1994
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Research Equipment to Measure Solar, Luminous, and Longwave Radiation for Building Research Studies
用于测量建筑研究中的太阳、光和长波辐射的研究设备
  • 批准号:
    8511214
  • 财政年份:
    1985
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

α-稳定过程驱动的随机微分方程的极限行为研究
  • 批准号:
    12301175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机几何的非合作集群一体化估计与行为语义认知研究
  • 批准号:
    62376147
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
驾驶行为随机异变下的交通事故风险演化规律解析与建模
  • 批准号:
    52372337
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
带奇异系数的多尺度随机(偏)微分方程的渐近行为研究
  • 批准号:
    12301179
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
列车随机服役状态下高速道岔钢轨裂纹萌生行为的宏微观多尺度研究
  • 批准号:
    52368060
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Neural and behavioral mechanisms of song learning in zebra finches
斑胸草雀鸣叫学习的神经和行为机制
  • 批准号:
    10678601
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Single-molecule Investigation of the Interaction Between MeCP2 and Chromatin
MeCP2 与染色质相互作用的单分子研究
  • 批准号:
    10606104
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
A latent variable model for quantifying social behavior in rodents
用于量化啮齿类动物社会行为的潜变量模型
  • 批准号:
    10535865
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
Long-term behavior of stochastic models on lattices with spatio-temporal interactions
具有时空相互作用的格子上随机模型的长期行为
  • 批准号:
    22K03333
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic Models with Random Times: Long-Time Behavior and Large Population Limit
具有随机时间的随机模型:长时间行为和大群体限制
  • 批准号:
    2206038
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了