Fast Direct Solvers for Boundary Integral Equations
边界积分方程的快速直接求解器
基本信息
- 批准号:0610097
- 负责人:
- 金额:$ 15.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-15 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research seeks to develop fast, accurate, and robust computational techniques for solving a class of mathematical equations known as "linear boundary-value problems". Such equations are ubiquitous in engineering and science, and the task of finding approximate solutions to them is frequently the most expensive component of numerical simulations.There currently exists a multitude of computational techniques for solving linear boundary-value problems, including some that are both highly accurate and very fast. The emergence of such methods over the last two decades has vastly increased our ability to simulate complex phenomena in science, engineering, medicine, and many other fields. However, existing high-performance computational techniques tend to be limited in their applicability, and somewhat fickle, in the sense that software needs problem-specific tuning to perform well. The principal goal of the proposed research is to eliminate these drawbacks for a particular class of high-performance techniques, thus making such algorithms accessible to a wide range of important computational problems.Technically speaking, the proposed research is concerned with a class of computational techniques based on formulating the problem as an equation on the boundary of the computational domain. It is known that the resulting equations can in some environments be solved extraordinarily rapidly. Existing techniques for this task are based on so-called "iterative solvers", which construct a sequence of approximate solutions that gradually approach the exact solution. The proposed research seeks to develop "direct solvers" for solving the boundary equations. Loosely speaking, a "direct solver" manipulates the mathematical equation to produce an algorithm that determines the unknown variables from the given data in one shot. Direct solvers are generally preferred to iterative ones, but they have in many environments appeared to be prohibitively expensive. However, recent developments indicate that it is possible to construct direct methods that are as fast as, and sometimes even faster than, existing iterative ones.Many benefits would accrue from the development of direct methods for solving the boundary equations associated with linear boundary-value problems; these include: (1) The ability to solve certain problems that are beyond the reach of existing fast algorithms. An example is the accurate solution of electromagnetic and acoustic scattering problems involving large objects at wave frequencies close to resonant frequencies of the scatterer. (2) An increase in computational speed in environments where the same equation needs to be solved multiple times for different data. Preliminary experiments involving the modeling of biochemical processes and large scattering problems indicate that a speed-up of one or two orders of magnitude is to be expected. (3) The availability of high-performance computational techniques that are sufficiently robust to be incorporated into general purpose software packages.
拟议的研究旨在开发快速、准确和鲁棒的计算技术来解决一类称为“线性边值问题”的数学方程。 此类方程在工程和科学中普遍存在,而寻找它们的近似解的任务通常是数值模拟中最昂贵的组成部分。目前存在多种用于求解线性边值问题的计算技术,其中包括一些都具有高度计算能力的计算技术。准确且非常快。 过去二十年来,此类方法的出现极大地提高了我们模拟科学、工程、医学和许多其他领域复杂现象的能力。 然而,现有的高性能计算技术往往在适用性方面受到限制,并且有些变化无常,因为软件需要针对特定问题进行调整才能良好运行。 所提出的研究的主要目标是消除特定类别的高性能技术的这些缺点,从而使此类算法可以解决广泛的重要计算问题。从技术上讲,所提出的研究涉及一类计算技术基于将问题表述为计算域边界上的方程。 众所周知,在某些环境中所得到的方程可以非常快速地求解。 该任务的现有技术基于所谓的“迭代求解器”,它构建一系列逐渐接近精确解的近似解。 拟议的研究旨在开发“直接求解器”来求解边界方程。 宽松地说,“直接求解器”操纵数学方程来产生一种算法,该算法可以一次性从给定数据中确定未知变量。 直接求解器通常比迭代求解器更受青睐,但它们在许多环境中似乎过于昂贵。 然而,最近的发展表明,构建直接方法是可能的,其速度与现有迭代方法一样快,有时甚至比现有迭代方法更快。开发用于求解与线性边值相关的边界方程的直接方法会带来许多好处问题;这些包括:(1)解决现有快速算法无法解决的某些问题的能力。 一个例子是精确解决涉及波频率接近散射体共振频率的大型物体的电磁和声学散射问题。 (2) 在需要对不同数据多次求解同一方程的环境中,计算速度得到提高。 涉及生化过程和大散射问题建模的初步实验表明,预计速度会提高一到两个数量级。 (3) 高性能计算技术的可用性足够强大,可以合并到通用软件包中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Per-Gunnar Martinsson其他文献
Per-Gunnar Martinsson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Per-Gunnar Martinsson', 18)}}的其他基金
DMS-EPSRC:Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
2313434 - 财政年份:2023
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Collaborative Research: Nonoscillatory Phase Methods for the Variable Coefficient Helmholtz Equation in the High-Frequency Regime
合作研究:高频域下变系数亥姆霍兹方程的非振荡相法
- 批准号:
2012606 - 财政年份:2020
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Randomized Algorithms for Solving Linear Systems
FRG:协作研究:求解线性系统的随机算法
- 批准号:
1952735 - 财政年份:2020
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Randomized Algorithms for Matrix Computations
矩阵计算的随机算法
- 批准号:
1929568 - 财政年份:2018
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Randomized Algorithms for Matrix Computations
矩阵计算的随机算法
- 批准号:
1620472 - 财政年份:2016
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Collaborative Research: Scalable and accurate direct solvers for integral equations on surfaces
协作研究:可扩展且精确的曲面积分方程直接求解器
- 批准号:
1320652 - 财政年份:2013
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
CAREER: Fast Direct Solvers for Differential and Integral Equations
职业:微分方程和积分方程的快速直接求解器
- 批准号:
0748488 - 财政年份:2008
- 资助金额:
$ 15.12万 - 项目类别:
Continuing Grant
相似国自然基金
催化烯烃直接硝化的P450过氧化物酶的分子设计与反应机制研究
- 批准号:22307125
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高效直接氨固体氧化物燃料电池阳极催化剂的设计制备及反应机制研究
- 批准号:22378069
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于曲面路径优化的直接能量沉积变形抑制机理及自适应调控
- 批准号:52305556
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多尺度多维度原位研究退役锂离子电池三元正极材料的直接再生机理
- 批准号:22375081
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
AMPK通过直接磷酸化调控NLRP3在抑制NASH进展中的作用和机制研究
- 批准号:82300656
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fast direct and multipole solvers for electromagnetic scattering problems on heterogeneous architectures
用于异构架构电磁散射问题的快速直接和多极求解器
- 批准号:
2417009 - 财政年份:2020
- 资助金额:
$ 15.12万 - 项目类别:
Studentship
Fast Direct Solvers for Boundary Value Problems on Evolving Geometries
演化几何边值问题的快速直接求解器
- 批准号:
1522631 - 财政年份:2015
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Fast direct solvers for the boundary element method in 3D and their applications to optimal design problems
3D 边界元法的快速直接求解器及其在优化设计问题中的应用
- 批准号:
26870269 - 财政年份:2014
- 资助金额:
$ 15.12万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
CBMS Conference: Algorithms for solving elliptic PDEs on modern computers---fast direct solvers, randomized methods, and high order discretizations,
CBMS 会议:在现代计算机上求解椭圆偏微分方程的算法——快速直接求解器、随机方法和高阶离散化,
- 批准号:
1347163 - 财政年份:2014
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant