Neural Networks for Estimating and Compensating the Nonlinear Characteristics of Nonstationary Complex Systems
用于估计和补偿非平稳复杂系统非线性特性的神经网络
基本信息
- 批准号:0601521
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-05-01 至 2010-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NEURAL NETWORKS FOR ESTIMATING AND COMPENSATING THE NONLINEAR CHARACTERISTICS OF NONSTATIONARY COMPLEX SYSTEMSABSTRACTScope and Intellectual Merit. The objective of this research is to find a method of accurately quantifying the distorted currents and voltages created by certain devices in power networks. Distortion causes electromagnetic inference with communication and the fast growing digital world, light flicker, overheating of electric machines and transformers and increased losses in transmission lines. For years utilities and customers have argued about who causes the distortion. Existing measurement techniques can lead to errors of up to 40%. The approach is to use Echo State Networks and Simultaneous Recurrent Neural Networks with super fast learning algorithms (biological inspired algorithms such as particle swarm optimization), and other computational intelligence algorithms, to accurately measure the distortion by monitoring only voltage and current without the need for added transducers. Such fast and powerful neural networks could also be used for closed loop control of the offending nonlinear devices to mitigate the distortion.Broader Benefits. The economic impact of applying brain-like techniques to monitor and control physical processes is significant. Reduced power losses mean savings and more useful power over the same lines. More secure and reliable power systems of high quality are of national interest. Moreover, reduced electromagnetic interference promotes a cleaner more reliable telecommunications and digital environment. Fast intelligent nonlinear controllers will also benefit other real-world high-speed closed loop controlled nonlinear non-stationary processes. There exists a talent shortage in the US in the application of intelligent systems, and the project will train a new generation of professionals, and educators, underrepresented minorities and undergraduates in the multiple fields of the project
神经网络,用于估计和补偿非组织复杂系统的非线性特征和智力功能。这项研究的目的是找到一种准确量化电力网络中某些设备创建的变形电流和电压的方法。失真会导致电磁与通信以及快速增长的数字世界,轻闪烁,电机和变压器的过热以及传输线的损失增加。 多年来,公用事业和客户一直在争论谁导致失真。现有的测量技术可能导致高达40%的错误。该方法是使用Echo状态网络和具有超快速学习算法(生物学启发算法(例如粒子群优化))和其他计算智能算法的同时复发性神经网络,以通过不需要添加传感器来监测电压和电流,从而准确地测量失真,从而准确地测量失真。如此快速,强大的神经网络也可以用于对有问题的非线性设备的闭环控制,以减轻失真。应用类似脑的技术监测和控制物理过程的经济影响很大。 减少功率损失意味着节省和在相同线上更有用的功率。高质量的更安全和可靠的电力系统具有国家感兴趣。此外,减少的电磁干扰可促进更清洁的电信和数字环境。快速智能的非线性控制器还将使其他现实世界中的其他高速闭环控制非线性非平稳过程受益。在美国的应用中,美国存在人才短缺,该项目将培训新一代的专业人员,以及该项目多个领域的教育工作者,代表性不足的少数民族和本科生
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Harley其他文献
Approximate dynamic programming based supplementary reactive power control for DFIG wind farm to enhance power system stability
基于近似动态规划的双馈风电场补充无功控制增强电力系统稳定性
- DOI:
10.1016/j.neucom.2015.03.089 - 发表时间:
2015-12 - 期刊:
- 影响因子:6
- 作者:
Guo Wentao;Feng Liu;Jennie Si;Dawei He;Ronald Harley;Shengwei Mei - 通讯作者:
Shengwei Mei
Ronald Harley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Harley', 18)}}的其他基金
Collaborative Research: Planning Grant: I/UCRC for Real-Time Intelligence for Smart Electric Grid Operations (RISE)
合作研究:规划资助:I/UCRC 智能电网运营实时智能 (RISE)
- 批准号:
1464603 - 财政年份:2015
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Student Support for IEMDC 2013 Conference Participation. To be Held May 12-15,2013 in Chicago, IL.
学生参与 IEMDC 2013 会议的支持。
- 批准号:
1338551 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Computational Intelligence Methods For Dynamic Stochastic Optimization Of Smart Grid Operation With High Penetration Of Renewable Energy
合作研究:可再生能源高渗透智能电网运行动态随机优化的计算智能方法
- 批准号:
1232031 - 财政年份:2012
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Sequence component models to calculate fault current contributions from wind generators
用于计算风力发电机故障电流贡献的序列组件模型
- 批准号:
1028546 - 财政年份:2010
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
GOALI: Neural Networks and Adaptive Critic Designs For Energy Security and Sustainability
GOALI:用于能源安全和可持续性的神经网络和自适应批评设计
- 批准号:
0802047 - 财政年份:2008
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Planning visit to Mexico: Intelligent Techniques to Operation, Control and Diagnosis of Power Plants and Power Systems Including FACTS Devices
计划访问墨西哥:包括FACTS设备在内的发电厂和电力系统的运行、控制和诊断的智能技术
- 批准号:
0519161 - 财政年份:2005
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Integrated Control of Wind Farms, Facts Devices and the Power Network Using Neural Networks and Adaptive Critic Designs
使用神经网络和自适应批评设计对风电场、事实设备和电力网络进行集成控制
- 批准号:
0524183 - 财政年份:2005
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Workshop on Global Dynamic Optimization of the Electric Power Grid in Atlanta, GA
佐治亚州亚特兰大电网全球动态优化研讨会
- 批准号:
0224592 - 财政年份:2002
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似国自然基金
通讯节能和安全意义下的忆阻神经网络的同步与状态估计
- 批准号:62373309
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
深度神经网络不确定性估计高性能算法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态事件触发机制的复杂神经网络状态估计与同步控制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于动态事件触发机制的复杂神经网络状态估计与同步控制研究
- 批准号:62276069
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
深度神经网络不确定性估计高性能算法研究
- 批准号:62206203
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Estimating the Topology of Low-Dimensional Data Using Deep Neural Networks
使用深度神经网络估计低维数据的拓扑
- 批准号:
DP210103304 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Discovery Projects
Development of Data-driven Prediction Model using 3D Multimodal Deep Neural Networks for Estimating the Evolution of White Matter Hyperintensities Associated with Small Vessel Disease in Brain MRI
使用 3D 多模态深度神经网络开发数据驱动的预测模型,用于估计与脑 MRI 中小血管疾病相关的白质高信号的演变
- 批准号:
20K23356 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Estimating Model Error in Neural Networks using Bayesian Techniques
使用贝叶斯技术估计神经网络中的模型误差
- 批准号:
531518-2018 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Investigation of artificial neural networks for estimating important component temperatures in electric motors
研究用于估计电动机重要部件温度的人工神经网络
- 批准号:
388765580 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Research Grants
A simple and efficient method of estimating artificial neural networks
一种简单有效的人工神经网络估计方法
- 批准号:
184485-1996 - 财政年份:1999
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual