Collaborative Research: Methods for Analyzing Large Dimensional Data

合作研究:大维数据分析方法

基本信息

  • 批准号:
    0551275
  • 负责人:
  • 金额:
    $ 13.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

Economists are fortunate to have access to lots of data, but the econometric tools that can beused to digest all the information remain rather limited. The standard assumption underlyingasymptotic analysis that treats N (number of cross-section units) as fixed and let T (the number oftime series observations) to tend to infinity is no longer appropriate for analyzing large data panels.The theme of the PIs research is efficient use of information in a large panel of data, say, X. The PI'swork will be organized around three projects. Project A continues the PIs previous work in using factor models to reduce the dimension of X. With N large, there is a need to carefully downweigh noisy data. The more difficult problem is to deal with the cross-section correlation in idiosyncratic errors that are not pervasive enough to be called common factors, but are strong enough to adversely affect the precision of the estimated common factors. In this grant, the PI's seek to develop moreefficient principal component estimators to deal with both problems.Project B continues to exploit the relevant information in X, but now the goal is to predictsome series, y, and the PI's step outside of the factor framework. The problem here is to pick out a setof reasonably strong predictors for y, but that the predictors are not very highly correlated witheach other, or else there will be too much information overlap. The PI's will use penalized regressions tostudy optimal shrinkage. The goal is to establish data dependent rules for the penalty parametersin a time series setting. For example, stationary and non-stationary predictors will be penalized atdifferent rates. Both in and out-of-sample predictions will be considered.Project C aims to develop an efficient estimator for panel cointegration in the presence of cross-section common shocks, which drive the comovement of economic variables. The framework allowsfor cross-sectionally correlated errors and encompasses the fixed effects model as a special case.Broader Impact and Intellectual Merit Standard principal component estimates are nowused in many forecasting exercises and in policy analysis. Improved factor estimates will inevitablyimpact these work. Project A should lead directly to better estimates for the number of factors,which has a natural role in asset pricing models and in demand analysis.In addition to providing results of immediate use to forecasters, Project B also impacts macroe-conomic analysis, as many economic models involve expectational variables. Economic hypothesescannot be fairly tested when the forecasts/conditional expectations are not properly modelled. Fur-thermore, instead of predicting y, a researcher might just want to predict if y is higher, lower, or stays thesame. The many predictors framework is potentially useful in broader contexts.When working with economic data, the assumption that the errors are iid across units is un-appealing. Project C tackles efficient estimation when the errors are cross-sectionally correlated.The results will be useful for economic analysis involving data for countries/industries/firms.
经济学家很幸运能够访问大量数据,但是可以使用来消化所有信息的计量经济学工具仍然相当有限。将n(横截面单元数)视为固定的标准假设分析,让t(时间串联观察的数量)倾向于无限属于无限,不再适合分析大型数据面板。PIS研究的主题是在大型数据集中有效地使用信息。项目A继续使用PIS先前的工作,以使用因子模型来降低X的尺寸。在n个较大的情况下,需要仔细地降低嘈杂的数据。更困难的问题是处理特质错误的横截面相关性,这些误差不足以被称为常见因素,但足够强大,可以不利地影响估计的共同因素的精度。在这笔赠款中,PI试图开发更有效的主成分估计器来处理这两个问题。项目B继续利用X中的相关信息,但现在的目标是预测闻名的系列,Y和PI在因子框架之外的台阶。这里的问题是为y选择一个合理强大的预测指标,但是预测变量与其他相关性并不高,否则信息会过多重叠。 PI将使用受惩罚的回归tostudy最佳收缩。目的是为罚款参数建立依赖数据的规则。例如,固定和非平稳预测因子将受到惩罚。将考虑在样本外预测中。该框架允许横截面相关的错误,并将固定效应模型作为特殊情况。Broader的影响和智力功绩标准主要成分估计现在已在许多预测练习和政策分析中使用。改进的因素估计将不可避免地影响这些工作。项目A应直接导致对因素数量的更好估计,该因素在资产定价模型和需求分析中具有自然作用。除了为预测者提供即时使用的结果外,项目B还影响了宏观工程学分析,因为许多经济模型都涉及预期变量。当预测/有条件期望未正确建模时,经济假设策划将进行公平测试。研究人员可能只想预测Y是更高,较低还是保持自己的状态,而不是预测Y。许多预测因素框架在更广泛的环境中可能有用。在使用经济数据时,假设错误是跨单位的IID的假设。当错误在横截面相关时,项目C对有效的估计进行了有效的估计。结果对于涉及国家/行业/公司的数据的经济分析将很有用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jushan Bai其他文献

Likelihood Approach to Dynamic Panel Models with Interactive Effects
Testing Panel Cointegration with Unobservable Dynamic Common Factors that are Correlated with the Regressors
使用与回归量相关的不可观察的动态公因子测试面板协整
RECENT DEVELOPMENTS IN LARGE DIMENSIONAL FACTOR ANALYSIS
大维因子分析的最新进展
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jushan Bai;Serena Ng
  • 通讯作者:
    Serena Ng
The likelihood ratio test for structural changes in factor models
因子模型结构变化的似然比检验
  • DOI:
    10.1016/j.jeconom.2023.105631
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Jushan Bai;Jiangtao Duan;Xu Han
  • 通讯作者:
    Xu Han
Vector Autoregressive Models with Structural Changes in Regression Coefficients and in Variance-Covariance Matrices

Jushan Bai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jushan Bai', 18)}}的其他基金

Structural Changes in High Dimensional Factor Models
高维因子模型的结构变化
  • 批准号:
    1658770
  • 财政年份:
    2017
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Standard Grant
New Approaches for Dynamic Panel Data Analysis
动态面板数据分析的新方法
  • 批准号:
    1357598
  • 财政年份:
    2014
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Standard Grant
Topics in Dynamic Panel Data Analysis, Time-Varying Individual Heterogeneities, and Cross-Sectional Dependence
动态面板数据分析、时变个体异质性和横截面依赖性主题
  • 批准号:
    0962410
  • 财政年份:
    2010
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Continuing Grant
Collaborative Research: Topics in Factor Analysis of Large Dimensions
合作研究:大维度因子分析主题
  • 批准号:
    0424540
  • 财政年份:
    2003
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Continuing Grant
Collaborative Research: Topics in Factor Analysis of Large Dimensions
合作研究:大维度因子分析主题
  • 批准号:
    0137084
  • 财政年份:
    2002
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Continuing Grant
Econometrics of Dynamic Index-Threshold Models
动态指数阈值模型的计量经济学
  • 批准号:
    9896329
  • 财政年份:
    1998
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Continuing Grant
Econometrics of Dynamic Index-Threshold Models
动态指数阈值模型的计量经济学
  • 批准号:
    9709508
  • 财政年份:
    1997
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Continuing grant
GMM Estimation of Multiple Sturctural Changes
多重结构变化的 GMM 估计
  • 批准号:
    9414083
  • 财政年份:
    1994
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Continuing grant

相似国自然基金

面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
智能建造“人机协作”场景下高龄建筑工人胜任力的影响机理与增强方法研究
  • 批准号:
    72301131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向实时视频分析的端云协作无服务器计算资源管理方法研究
  • 批准号:
    62302292
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于人—信息—物理系统的双臂协作机器人安全交互方法研究
  • 批准号:
    52375031
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
面向智能物联网的端边协作机制与任务调度方法研究
  • 批准号:
    62372038
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2415067
  • 财政年份:
    2024
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327892
  • 财政年份:
    2024
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327893
  • 财政年份:
    2024
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了