Engineering Research Center for Compact and Efficient Fluid Power

紧凑高效流体动力工程研究中心

基本信息

  • 批准号:
    0540834
  • 负责人:
  • 金额:
    $ 1497万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

The vision of the ERC is to create new fluid power technology that is compact and efficient. This will cause a radical transformation of fluid power, signigicantly reducing energy consumption and soawning whole new industries. New control approaches and system configurations will be developed to replace current, inefficient valve throttling approaches. These include high performance pump control, regeneration, on-off valve PWM control and biomimetic distributed pumping and control. A new generation of pump motors and actuators with improved efficiency, enabled by actively controlled tribological surfaces, will be developed. Biologically inspired coatings will reduce drag. Phase-change energy storage will create more compact energy storage and soures. Chemofluidie actuation and free-piston engine compressors will provide order-of-magnitude better energy and power density for self-powered and mobile devices, enabling a host of new applications. Use of composite and functionally graded materials and integrating components into unfied systems will minimize the weight and volume of fluid power systems. Problems with noise, vibration, leakage, contamination and awkward interfaces will be addressed, leading to wider, more efficient and more satisfactory use of fluid power. The result will be an expansion of fluid power use, currently limited to heavy equipment, to portable and self-powered devices such as high-power wearable tools and rescue robots. Whole new industries will be created where compact and efficient fluid power can be used for underwater exploration, for rescue operations, for remotely manipulating nuclear materials, for bomb disposal, for medical and rehabilitation applications and for wearable or compact tools for home and industrial use. Improved compactness will enable fluid power to perform tasks that are not presently possible. Improved efficiently will significantly reduce petroleum consumption and pollution. For each one percent improvement in overall fuel comsumption for transportation, $2.4 billion of crude oil is saved each year. The superior power density of fluid power makes it ideal for regenerative braking with field tests showing fuel savings of 25 to 35% for trucks. The ERC will develop new, high density accumulators making the regeneration approach feasible for passenger vehicles, resulting in much larger energy savings. Significant energy savings can also be achieved in the construction, mining, agricultural and industrial sectors. Education and outreach innovations of the ERC include (1) the development of benchmark fluid power labs augmented with take-home laboratory ,odules (2) collaboration with the Science Museum of Minnesota to develop permanent and traveling exhibits, educational materials on fluid power and an extracurricular fluid power program for middle schools and high schools, (3) collaboration with Project Lead the Way to include fluid power in a high school technology curriculum, (4) the creation of industrial internship and co-op programs for both undergraduate and graduate students, and (5) the enhancement of continuing education in fluid power for industry through hands-on short courses and distance education.
ERC 的愿景是创造紧凑、高效的新型流体动力技术。 这将引发流体动力的彻底变革,显着降低能源消耗并催生全新产业。 将开发新的控制方法和系统配置来取代当前低效的阀门节流方法。 其中包括高性能泵控制、再生、开关阀 PWM 控制以及仿生分布式泵送和控制。 将开发通过主动控制摩擦表面实现更高效率的新一代泵电机和执行器。 受生物启发的涂层将减少阻力。 相变储能将创造更紧凑的储能和资源。 化学流体驱动和自由活塞发动机压缩机将为自供电和移动设备提供更高数量级的能量和功率密度,从而实现许多新应用。 使用复合材料和功能梯度材料以及将组件集成到非固定系统中将最大限度地减少流体动力系统的重量和体积。 噪声、振动、泄漏、污染和尴尬的接口问题将得到解决,从而使流体动力的使用更广泛、更有效和更令人满意。 其结果将是流体动力的使用范围从目前仅限于重型设备扩展到便携式和自供电设备,例如高功率可穿戴工具和救援机器人。 将创建全新的行业,其中紧凑而高效的流体动力可用于水下勘探、救援行动、远程操纵核材料、炸弹处理、医疗和康复应用以及家用和工业用途的可穿戴或紧凑型工具。 改进的紧凑性将使流体动力能够执行目前不可能的任务。 提高效率将显着减少石油消耗和污染。 交通运输整体燃料消耗每减少 1%,每年可节省 24 亿美元的原油。 流体动力卓越的功率密度使其成为再生制动的理想选择,现场测试显示卡车燃油节省 25% 至 35%。 ERC 将开发新型高密度蓄电池,使再生方法适用于乘用车,从而节省更多能源。 建筑、采矿、农业和工业部门也可以实现显着的节能。 ERC 的教育和推广创新包括 (1) 开发基准流体动力实验室,并配备带回家的实验室,(2) 与明尼苏达州科学博物馆合作开发永久性和巡回展览、流体动力教育材料和面向初中和高中的课外流体动力项目,(3) 与 Project Lead the Way 合作,将流体动力纳入高中技术课程,(4) 为本科生和研究生创建工业实习和合作项目, 和(5)通过实践短期课程和远程教育,加强工业流体动力继续教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kim Stelson其他文献

Kim Stelson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kim Stelson', 18)}}的其他基金

Increasing the Efficiency of Wind Turbines through Understanding of Their Transient Responses
通过了解风力涡轮机的瞬态响应来提高风力涡轮机的效率
  • 批准号:
    1634396
  • 财政年份:
    2016
  • 资助金额:
    $ 1497万
  • 项目类别:
    Standard Grant
REU Site: Research Experiences for Undergraduates in Fluid Power
REU网站:流体动力本科生研究经验
  • 批准号:
    1560239
  • 财政年份:
    2016
  • 资助金额:
    $ 1497万
  • 项目类别:
    Standard Grant
Workshop: Fluid Power Advanced Manufacturing; Minneapolis, Minnesota; May 24-25, 2016
车间:流体动力先进制造;
  • 批准号:
    1634216
  • 财政年份:
    2016
  • 资助金额:
    $ 1497万
  • 项目类别:
    Standard Grant
REU Site: Research Experiences for Undergraduates in Fluid Power
REU网站:流体动力本科生研究经验
  • 批准号:
    1263346
  • 财政年份:
    2013
  • 资助金额:
    $ 1497万
  • 项目类别:
    Standard Grant
Presidential Young Investigator Award: Sensing And Control in Selected Manufacturing Processes.
总统青年研究员奖:选定制造过程中的传感和控制。
  • 批准号:
    8451623
  • 财政年份:
    1985
  • 资助金额:
    $ 1497万
  • 项目类别:
    Continuing Grant
Research Initiation: Measurement of the Pressure and Frictional Stresses in Cold Rolling Using the Elastic Deformation of the Roll
研究启动:利用轧辊的弹性变形测量冷轧中的压力和摩擦应力
  • 批准号:
    8307508
  • 财政年份:
    1983
  • 资助金额:
    $ 1497万
  • 项目类别:
    Standard Grant

相似国自然基金

基于产溶剂梭菌的NAD(P)H补偿模块对中心碳代谢的调控作用研究
  • 批准号:
    21706123
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于“中心代谢途径偶联”的代谢改造及适配性研究
  • 批准号:
    31670051
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
托卡马克超导磁体中心螺管模型线圈的失超研究
  • 批准号:
    51406215
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
非中心对称多元金属硫属化合物的合成及其非线性光学性质的研究
  • 批准号:
    21003126
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
II型HMG-CoA还原酶活性中心与其配体相互作用的机理及其高效抑制剂的研究
  • 批准号:
    20873049
  • 批准年份:
    2008
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目

相似海外基金

Designing Rational Combinations to Improve CAR T Cell Therapy for Prostate Cancer
设计合理的组合以改善前列腺癌的 CAR T 细胞疗法
  • 批准号:
    10752046
  • 财政年份:
    2024
  • 资助金额:
    $ 1497万
  • 项目类别:
古代日本における壁画の制作技法の伝播に関する研究-描画の初期工程の技法を中心に
日本古代壁画技法的传播研究——以绘画初始过程的技法为中心
  • 批准号:
    24KJ1608
  • 财政年份:
    2024
  • 资助金额:
    $ 1497万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Northwestern University Materials Research Science and Engineering Center
西北大学材料研究科学与工程中心
  • 批准号:
    2308691
  • 财政年份:
    2023
  • 资助金额:
    $ 1497万
  • 项目类别:
    Cooperative Agreement
Research Project 2
研究项目2
  • 批准号:
    10403256
  • 财政年份:
    2023
  • 资助金额:
    $ 1497万
  • 项目类别:
Data Management Core
数据管理核心
  • 批准号:
    10682165
  • 财政年份:
    2023
  • 资助金额:
    $ 1497万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了