DDDAS - SMRP: A Framework For the Dynamic Data-Driven Fault Diagnosis of Wind Turbine Systems

DDDAS - SMRP:风力涡轮机系统动态数据驱动故障诊断框架

基本信息

  • 批准号:
    0540278
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

CMS-0540132, PI: Yu Ding, Texas A&M UniversityCMS-0540278, PI: Jiong Tang, University of ConnecticutAbstractThis collaborative research (0540132, PI: Yu Ding, Texas A&M University; and 0540278, PI: Jiong Tang, University of Connecticut) will provide a dynamic data-driven framework for wind turbine diagnosis. This new methodology is fundamentally different from the current practice whose performance is limited due to the non-dynamic and non-robust nature in the modeling approaches and in the data collection and processing strategies. This framework consists of two robust data pre-processing modules for highlighting fault features and removing sensor anomaly, three interrelated, multi-level models that describe different details of the system behaviors, and one dynamic strategy for the robust local interrogation that allows for measurements to be adaptively taken according to specific physical conditions and the associated risk level. It incorporates both historical data and on-line signals into the system modeling, and enables the ability to adaptively alter data collection procedures to best capture the critical system features. Collectively, these components lead to a robust and sensitive diagnosis system for wind turbines. This research is strengthened by a close collaboration with industry that will provide abundant historical sensor data and detailed system characterization, and also offer in-field implementation opportunities. The proposed research will have strategic importance on the utilization of wind energy that is currently the most viable clean energy alternative. Today, in the vast areas that have low wind speed, wind energy cannot compete with traditional energy sources as it has a higher cost, mainly owing to its high maintenance costs and low confidence in the diagnosis technology. This dynamic and data-driven fault diagnosis will play a key role in enabling a cost-effective generation of wind electricity. Progress in the fault diagnosis of blades and gearboxes will also benefit the power generation, automobile, aerospace, and engine industries. Meanwhile, the collaborative nature of this research will provide students with a multidisciplinary training and will bring industrial perspective to the universities. This project will have a long-term impact on education through the curriculum development and will promote the public awareness of clean energy concept through outreaches to high schools.
CMS-0540132, PI: Yu Ding, Texas A&M UniversityCMS-0540278, PI: Jiong Tang, University of ConnecticutAbstractThis collaborative research (0540132, PI: Yu Ding, Texas A&M University; and 0540278, PI: Jiong Tang, University of Connecticut) will provide a dynamic data-driven framework for wind涡轮诊断。 这种新方法与当前实践的根本不同,由于当前的实践,由于建模方法以及数据收集和处理策略中的非动态和非稳定性,其性能受到限制。 该框架由两个可靠的数据预处理模块组成,用于突出显示故障功能并删除传感器异常,三个相互关联的多级模型,描述了系统行为的不同细节,以及一个可靠的本地询问的动态策略,可以根据特定的物理条件和相关的风险水平适应测量值。 它将历史数据和在线信号同时纳入系统建模,并使能够自适应更改数据收集过程以最好地捕获关键系统功能。 总的来说,这些组件为风力涡轮机提供了强大而敏感的诊断系统。 与行业的密切合作可以加强这项研究,该行业将提供丰富的历史传感器数据和详细的系统表征,并提供场地实施机会。 拟议的研究将对目前最可行的清洁能源替代品的风能利用具有战略意义。 如今,在风速较低的广阔地区,风能无法与传统能源竞争,因为它具有较高的成本,这主要是由于其高维护成本和对诊断技术的信心较低。 这种动态和数据驱动的故障诊断将在实现具有成本效益的风能产生方面发挥关键作用。 叶片和变速箱故障诊断的进展也将使发电,汽车,航空航天和发动机行业受益。同时,这项研究的协作性质将为学生提供多学科的培训,并将为大学带来工业视角。 该项目将通过课程开发对教育产生长期影响,并将通过向高中推广来提高公众对清洁能源概念的认识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiong Tang其他文献

Cloning of murine BRI3 gene and study on its function for inducing cell death
小鼠BRI3基因的克隆及其诱导细胞死亡的功能研究
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lizhu Lin;Hong Yu;M. Ying;Jiong Tang;W. Zhou;Shouyuan Zhao;Changben Li
  • 通讯作者:
    Changben Li
Investigation of Granular Damping in Transient Vibrations Using Hilbert Transform Based Technique
使用基于希尔伯特变换的技术研究瞬态振动中的粒状阻尼
Prototyping a wireless sensing platform for acoustic emission signals collected by microphone arrays
为麦克风阵列收集的声发射信号构建无线传感平台原型
  • DOI:
    10.1117/12.816139
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Lu;Jiong Tang
  • 通讯作者:
    Jiong Tang
Analysis of Segregation Phenomenon in Granular Motion
颗粒运动偏析现象分析
  • DOI:
    10.1115/imece2006-14443
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. Fang;Jiong Tang
  • 通讯作者:
    Jiong Tang
Data Analytics Methods for Wind Energy Applications
风能应用的数据分析方法
  • DOI:
    10.1115/gt2015-43286
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Ding;Jiong Tang;Jianhua Z. Huang
  • 通讯作者:
    Jianhua Z. Huang

Jiong Tang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiong Tang', 18)}}的其他基金

Collaborative Research: Structural Fault Diagnosis and Prognosis Utilizing a Physics-guided Data Analytics Approach
合作研究:利用物理引导的数据分析方法进行结构故障诊断和预测
  • 批准号:
    1825324
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: From Bytes to Watts - A Data Science Solution to Improve Wind Energy Reliability and Operation
BIGDATA:IA:协作研究:从字节到瓦特 - 提高风能可靠性和运行的数据科学解决方案
  • 批准号:
    1741174
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CPS/Synergy/Collaborative Research: Cybernizing Mechanical Structures through Integrated Sensor-Structure Fabrication
CPS/协同/协作研究:通过集成传感器结构制造实现机械结构的网络化
  • 批准号:
    1544707
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: A System-Level Framework for Operation and Maintenance: Synergizing Near and Long Term Cares for Wind Turbines
GOALI/协作研究:运行和维护的系统级框架:协同风力涡轮机的近期和长期维护
  • 批准号:
    1300236
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Hybrid Control of Gear System Vibration with Time-Varying Dynamics via Piezo-Composite Array
合作研究:通过压电复合材料阵列对时变动力学齿轮系统振动进行混合控制
  • 批准号:
    1130724
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Efficient Probabilistic Approach Using Order Reduction and Hybrid Models -- A New Paradigm for Structural Dynamic Analysis
协作研究:使用降阶和混合模型的高效概率方法——结构动态分析的新范式
  • 批准号:
    0927734
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
GOALI/Collaborative Research: Understanding and Controlling Variation Propagation in Periodic Structures: From Geometry to Dynamic Response
GOALI/合作研究:理解和控制周期性结构中的变异传播:从几何到动态响应
  • 批准号:
    0900275
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SST: Multifunctional Adaptive Piezoelectric Sensory System for Structural Damage Detection
SST:用于结构损伤检测的多功能自适应压电传感系统
  • 批准号:
    0528790
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SST: Robust Wireless Piezoelectric Sensor Network for Structural Health Monitoring
SST:用于结构健康监测的强大无线压电传感器网络
  • 批准号:
    0428210
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Granular Damping Analysis and Design for Structural Vibration Suppression
结构振动抑制的颗粒​​阻尼分析与设计
  • 批准号:
    0324436
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Study of a new biomarker in pleural mesothelioma and clinical application to early diagnosis
胸膜间皮瘤新生物标志物的研究及其早期诊断的临床应用
  • 批准号:
    25860637
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Collaborative Research: DDDAS-SMRP: Optimizing Signal and Image Processing in a Dynamic, Data-Driven Application System
合作研究:DDDAS-SMRP:在动态、数据驱动的应用系统中优化信号和图像处理
  • 批准号:
    0911750
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
DDDAS-SMRP: Measuring and Controlling Turbulence and Particle Populations
DDDAS-SMRP:测量和控制湍流和粒子群
  • 批准号:
    0540147
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
DDDAS-SMRP: Data Assimilation by Field Alignment
DDDAS-SMRP:通过场对齐进行数据同化
  • 批准号:
    0540259
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
DDDAS - SMRP: A Framework For the Dynamic Data-Driven Fault Diagnosis of Wind Turbine Systems
DDDAS - SMRP:风力涡轮机系统动态数据驱动故障诊断框架
  • 批准号:
    0540132
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了