CAREER: Large and Multi-Dimensional Solutions of Conservation Laws
职业:守恒定律的大型和多维解决方案
基本信息
- 批准号:0539549
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-31 至 2011-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the properties of nonlinear Partial Differential Equations (PDE) is a fundamental challenge in modern pure and applied mathematics. The goal of the research projects is to gain new insightinto three specific areas of evolutionary PDE. (A) Large solutions of one-dimensional systems of conservation laws:The combined effects of large data and nonlinear effects pose a basic challenge as well as being of obvious importance in applications. Building on existing work this project aims at giving further examples of blowup solutions, understanding their stability properties, and identifying assumptions guaranteeing global existence of large solutions.(B) Existence and qualitative properties of solutions for particular systems of multi-dimensional systems of conservation laws. Multi-dimensional equations display an exceedingly richvariety of behaviors and there is currently no general existence result available for global solutions. Recent examples of blowup demonstrate that the small variation theory for one-dimensionalsystems cannot be generalized to several space dimensions. The research aims at a "bottom-up" approach where insight is obtained from specific cases. The systems will be chosen to provide simplified, but non-trivial, examples with strong structural constraints. The goal is to create a toolbox of methods that can be applied to more general systems. Both analytical and numerical tools will be employed to gain insight into the structure of the solutions.(C) The Navier-Stokes equations for fluid flow provide a basicmodel of importance in a wide range of applications. The goal of this project is to investigate three issues: formation of vacuums (cavitation), the effect of including temperature dependence in the transport coefficients (viscosities and heat conductivity), and multi-dimensional flows with large amplitudes. The various projects will also address the significant numerical challenges one faces in computing large or multi-dimensional solutions, and flows containing vacuums. Vice versa, exact solutionswill be used to benchmark various computational codes.The projects aims at a better understanding of how nonlinear mechanisms interact with one- or multi-dimensional effects in equations that are extensively used in physical models, ranging from properties of materials and to fluid flow and meteorology. While these issues are of independent theoretical interest they are also of obvious importance in applications to Science and Engineering. Several of the projects require development and testing of high performance computer codes with important applications in everyday simulations. A combined approach of analytical techniques, modeling, and numerical calculations will enhance basic understanding of fluid flow and its applications.
理解非线性偏微分方程 (PDE) 的性质是现代纯数学和应用数学的一项基本挑战。这些研究项目的目标是获得对进化偏微分方程三个特定领域的新见解。 (A)一维守恒定律系统的大解:大数据和非线性效应的综合影响提出了基本挑战,并且在应用中具有明显的重要性。在现有工作的基础上,该项目旨在提供爆炸解的更多示例,了解其稳定性属性,并确定保证大型解的全局存在的假设。(B) 守恒定律多维系统的特定系统解的存在性和定性属性。多维方程表现出极其丰富的行为,目前还没有通用的存在结果可用于全局解。最近的爆炸例子表明,一维系统的小变分理论不能推广到多个空间维度。该研究旨在采用“自下而上”的方法,从具体案例中获得见解。将选择系统来提供具有强大结构约束的简化但不平凡的示例。目标是创建一个可应用于更通用系统的方法工具箱。将使用分析和数值工具来深入了解解决方案的结构。(C) 流体流动的纳维-斯托克斯方程提供了在广泛应用中具有重要意义的基本模型。该项目的目标是研究三个问题:真空的形成(空化)、传输系数中温度依赖性的影响(粘度和导热率)以及大振幅的多维流动。各个项目还将解决人们在计算大型或多维解决方案以及包含真空的流动时所面临的重大数值挑战。 反之亦然,精确的解决方案将用于对各种计算代码进行基准测试。这些项目旨在更好地理解非线性机制如何与方程中的一维或多维效应相互作用,这些方程广泛用于物理模型,范围从材料的属性到流体流动和气象学。 虽然这些问题具有独立的理论意义,但它们在科学和工程的应用中也具有明显的重要性。其中一些项目需要开发和测试在日常模拟中具有重要应用的高性能计算机代码。分析技术、建模和数值计算的结合方法将增强对流体流动及其应用的基本理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helge Jenssen其他文献
Helge Jenssen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helge Jenssen', 18)}}的其他基金
Construction and Physicality of Compressible Euler Flows
可压缩欧拉流的构造和物理性
- 批准号:
1813283 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: Fundamental challenges in nonlinear hyperbolic PDE
合作研究:非线性双曲偏微分方程的基本挑战
- 批准号:
1311353 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Entropies, geometric structures, and interactions for systems of conservation laws
守恒定律系统的熵、几何结构和相互作用
- 批准号:
1009002 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Large and Multi-Dimensional Solutions of Conservation Laws
职业:守恒定律的大型和多维解决方案
- 批准号:
0449689 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Large Solutions to Systems of Nonlinear Equations
非线性方程组的大解
- 批准号:
0422888 - 财政年份:2003
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Large Solutions to Systems of Nonlinear Equations
非线性方程组的大解
- 批准号:
0206631 - 财政年份:2002
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
大尺寸直接带隙半导体γ-CuX(Br/I)晶体的多形体相变法生长及其超快闪烁性能研究
- 批准号:12375180
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于气体多通腔多模非线性效应的大能量可调谐光源的研究
- 批准号:12374318
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
多源数据约束下的大尺度河道形状建模方法研究
- 批准号:42371481
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
基于可变惯容调谐质量阻尼器的大跨度桥梁多模态涡振半主动控制方法研究
- 批准号:52378147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多模态大模型的小样本自适应迁移方法研究
- 批准号:62372155
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
- 批准号:
2239410 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Systems Science Approaches for Reducing Youth Obesity Disparities
减少青少年肥胖差异的系统科学方法
- 批准号:
10664145 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别: