Natural Language Processing Support for eRulemaking
对电子规则制定的自然语言处理支持
基本信息
- 批准号:0535099
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-11-15 至 2010-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Each year Federal regulatory agencies issue more than 4,000 new rules. Many of these must be created through a process known as notice and comment (N&C) rulemaking: the agency drafts a proposed rule and then exposes the proposal, any underlying data, and its legal and policy rationale to public comment. N&C rulemaking is one of the most important methods of contemporary public policy making; it is also one of the slowest and most expensive. Although an agency may receive hundreds of thousands of comments for a proposed rule, its legal obligation is to review and respond to all significant comments. As requirements to consult, study, and/or certify have proliferated, rule writers have found it increasingly difficult to keep track of them and to recognize which, if any, are relevant in a particular rulemaking. Electronic rulemaking (eRulemaking) has the potential to radically transform the N&C process. It could make the process more transparent and accessible to the public, and more substantively reliable and cost-effective for the agency. So far, though, E-docket systems and eRulemaking workbenches make only rudimentary use of available technology.This grant will use well-developed and emerging methods of natural language processing (NLP) to develop tools to aid agency rule writers in: (1) organizing, analyzing, and managing the comments, studies, and other supporting documents associated with a proposed rule; and (2) analyzing proposed rules to flag possibly relevant legal mandates from among the large number of statutes and Executive Orders that potentially requireanalyses, consultations, or certifications during rulemaking. The research team will collaborate with the Federal Departments of Transportation and Commerce. The team will focus, in particular, on the use ofinformation extraction, text categorization, and opinion-oriented text analysis techniques in both supervised and weakly supervised machine learning frameworks. Evaluation will involve: the use of accepted technical measures of NLP performance (e.g., recall and precision); a combination of qualitative and quantitative social science methods to assess integration of the tools into the rulewriting process as perceived by staff at various levels of the agency hierarchy; and observation by legally-trained researchers with expert understanding of the rulemaking process.Intellectual Merit. The research will help realize the positive potential of eRulemaking, advance the state-of-the-art in NLP, and improve our understanding of the effects of technology on rulemaking. Because of its interdisciplinary composition - combining expertise in NLP, expert knowledge about regulatory law and legal information systems, and social science experience in the effect of technology on organizations - the Cornell team is well situated to generate both qualitative and quantitative data about the crucial, but stilllargely under-studied, rulemaking process.Broader Impacts.The project provides an important opportunity for interdisciplinary education and research for PhD, master's, and undergraduate students in Cornell's Information Science Program. All data sets and tools will be made available to other researchers. The NLP methods to be developed are general-purpose techniques, trainable for any domain or genre, and useful in any context that requires managing, organizing, and analyzing large volumes of text. Finally, many of the same techniques that help agency rule writers can be used to designagency websites that help the public search, sort, and otherwise selectively access materials in the rulemaking process.
联邦监管机构每年都会发布4,000多个新规则。其中许多必须通过称为通知和评论的过程(N&C)规则制定:该机构起草拟议的规则,然后揭露提案,任何基本数据以及其法律和政策理由的公众评论。 N&C规则制定是当代公共政策制定最重要的方法之一;它也是最慢,最昂贵的之一。尽管代理机构可能会收到数十万条评论,以便为拟议的规则收到其法律义务,是审查和回应所有重要评论。作为咨询,研究和/或认证的要求,规则作者发现,跟踪它们并认识到哪种(如果有的话)与特定的规则制定相关,这越来越困难。电子规则制定(搜索)具有从根本上转化N&C工艺的潜力。它可以使该过程更加透明,公众可以访问,并且对该机构更可靠和成本效益。不过,到目前为止,E-wocking Systems和Erulemaking Workbenches仅对可用技术进行基本的使用。本赠款将使用自然语言处理的发达和新兴方法(NLP)开发工具来帮助代理机构规则作者:(1)组织,分析和管理与拟议规则相关的评论,研究和其他支持文档; (2)分析拟议的规则,以在大量法规和行政命令中提出可能需要的法律规定,这些法规和执行命令可能需要规则制定期间要求,咨询或证书。研究团队将与联邦运输和商业部门合作。 该团队将尤其将重点放在使用信息提取,文本分类和面向意见的文本分析技术上,并在受监督和弱监督的机器学习框架中。评估将涉及:使用公认的NLP绩效技术度量(例如,回忆和精度);定性和定量社会科学方法的结合,以评估工具将工具集成到法规制定过程中,这是由员工在代理层次结构的各个层面上所感知的;以及经过法律训练的研究人员的观察,对规则制定过程的专家了解。这项研究将有助于实现磨难,推进NLP的最先进的积极潜力,并提高我们对技术对规则制定影响的理解。由于其跨学科的组成 - 结合了NLP的专业知识,有关监管法和法律信息系统的专家知识以及社会科学在技术对组织的影响方面的经验 - 康奈尔团队非常适合生成有关定性和定量数据,既有定性和定量数据涉及有关至关重要的,但仍在研究的过程中,统治者的phorders and PHREDS。康奈尔信息科学课程的本科生。所有数据集和工具都将提供给其他研究人员。要开发的NLP方法是通用技术,可用于任何领域或类型的训练,并且在任何需要管理,组织和分析大量文本的情况下有用。最后,许多相同的技术可以帮助代理商规则作者来设计帮助公众搜索,分类或以其他方式选择性地访问规则制定过程中的材料的网站。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claire Cardie其他文献
Using natural language processing to improve eRulemaking: project highlight
使用自然语言处理改进电子规则制定:项目亮点
- DOI:
10.1145/1146598.1146651 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Claire Cardie;Cynthia Farina;Thomas Bruce - 通讯作者:
Thomas Bruce
Embedded machine learning systems for natural language processing: a general framework
- DOI:
10.1007/3-540-60925-3_56 - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Claire Cardie - 通讯作者:
Claire Cardie
BeSt: The Belief and Sentiment Corpus
最佳:信念和情感语料库
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jennifer Tracey;Owen Rambow;Michael Arrigo;Claire Cardie;Adam Dalton;H. Dang;Mona T. Diab;Bonnie Dorr;Louise Guthrie;M. Markowska;S. Muresan;Vinodkumar Prabhakaran;Samira Shaikh;T. Strzalkowski;Janyce Wiebe - 通讯作者:
Janyce Wiebe
Using Cognitive Biases to Guide Feature Set Selection
使用认知偏差来指导特征集选择
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Claire Cardie - 通讯作者:
Claire Cardie
Integrating case-based learning and cognitive biases for machine learning of natural language
将基于案例的学习和认知偏差整合到自然语言机器学习中
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Claire Cardie - 通讯作者:
Claire Cardie
Claire Cardie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claire Cardie', 18)}}的其他基金
RI: Small: Collaborative Research: Computational Methods for Argument Mining: Extraction, Aggregation, and Generation
RI:小型:协作研究:参数挖掘的计算方法:提取、聚合和生成
- 批准号:
1815455 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
HCC: Large: Social-Computational Support of Civic Engagement in Public Policymaking
HCC:大:公民参与公共政策制定的社会计算支持
- 批准号:
1314778 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SoCS: Collaborative Research: Leveraging Others' Insights to Improve Collaborative Analysis
SoCS:协作研究:利用他人的见解来改进协作分析
- 批准号:
0968450 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Reducing the Corpus Annotation Bottleneck for Natural Language Learning
减少自然语言学习的语料库标注瓶颈
- 批准号:
0208028 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
POWRE-Integrating Natural Language Processing and Information Retrieval for Intelligent Text-Processing
POWRE-集成自然语言处理和信息检索以实现智能文本处理
- 批准号:
0074896 - 财政年份:2000
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Knowledge Acquisition for Natural Language Understanding
自然语言理解的知识获取
- 批准号:
9624639 - 财政年份:1996
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Computational Aspects of Cognitive Science Focus Area: Human Computation
认知科学的计算方面重点领域:人类计算
- 批准号:
9454149 - 财政年份:1994
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
感音神经性听力损失对鸡尾酒会情境下高级语言加工机制影响的研究
- 批准号:82301300
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
执行功能促进卒中后运动性失语症患者语言加工过程的脑网络及神经心理机制研究
- 批准号:82372555
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人类嗓音中语言和非语言信息加工的认知神经机制及其模式识别
- 批准号:32371114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
学龄前自闭症儿童语言加工的神经机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
学龄前自闭症儿童语言加工的神经机制
- 批准号:32200808
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Navigating Chemical Space with Natural Language Processing and Deep Learning
利用自然语言处理和深度学习驾驭化学空间
- 批准号:
EP/Y004167/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
REU Site: Recent Advances in Natural Language Processing
REU 网站:自然语言处理的最新进展
- 批准号:
2349452 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Naturalistic Social Communication in Autistic Females: Identification of Speech Prosody Markers
自闭症女性的自然社交沟通:语音韵律标记的识别
- 批准号:
10823000 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
The Socio-economic Impact of the Post-COVID-19 Condition in the Canadian Context
COVID-19 后疫情对加拿大的社会经济影响
- 批准号:
494280 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Operating Grants
Studies of speech, image and natural language processing for multimodal spoken document retrieval
多模态语音文档检索的语音、图像和自然语言处理研究
- 批准号:
23K11216 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)