Metathesis Routes to Ultra-Incompressible Borides, High Surface Area Nitrides and Intermetallics
超不可压缩硼化物、高表面积氮化物和金属间化合物的复分解路线
基本信息
- 批准号:0453121
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-15 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solid-state metathesis (exchange) reactions can enable the rapid synthesis of materials that are difficult to prepare by conventional methods. This project will explore new routes to high surface area titanium nitride, ultra-incompressible transition metal diborides and structural intermetallics. Since metathesis reactions produce crystalline materials within seconds due to growth in a molten salt matrix, crystallite size and surface area can be controlled with appropriate additives. Titanium nitride, an electrically conductive refractory ceramic used in electrodes for super-capacitors, will be synthesized to test this hypothesis. A new class of ultra-incompressible, hard materials will be created by combining high electron density metals, such as osmium, with small covalently bonded main group elements such as boron. Genetic algorithms will be developed that enable metathesis reactions to be optimized while running a minimum number of reactions. Graduate students will learn synthesis, characterization and measuring of physical properties through collaborations both within the chemistry department and with materials science, mechanical engineering and industrial partners. Undergraduates, including those from under-represented groups, will assist the graduate students in research, thereby enhancing the future graduate student pool in materials chemistry. A new course is being developed entitled "It's a Material World" that will enable both science and non-science majors to gain a better understanding of the importance of materials in the real world. The curriculum developed for this course will then be reconfigured and used to reach a broader audience from grade school children through alumni.The modern world is based on developing new and improved materials such as doped silicon to run computers and synthetic diamond for cutting through rock to build roads. Solid-state metathesis (exchange) reactions can enable the rapid synthesis of materials that are difficult to prepare by conventional methods. Since metathesis reactions produce crystalline materials within seconds, due to growth in a molten salt matrix, the size of the crystal grains and their surface area can be controlled with appropriate additives. Titanium nitride, which is an electrically conductive high temperature ceramic used in electrodes for rapidly chargeable and dischargeable energy storage devices known as super-capacitors, will be synthesized to test this hypothesis. A new class of ultra-incompressible, hard materials will be created by combining high density metals, such as osmium, with small main group elements such as boron. Computer codes, known as genetic algorithms, will be developed that enable metathesis reactions to be optimized while running a minimum number of reactions. Graduate students will learn synthesis, characterization and measuring of physical properties through collaborations both within the chemistry department and with materials science, mechanical engineering and industrial partners. Undergraduates, including those from under-represented groups, will assist the graduate students in research, thereby enhancing the future graduate student pool in materials chemistry.
固态复分解(交换)反应可以快速合成传统方法难以制备的材料。该项目将探索高表面积氮化钛、超不可压缩过渡金属二硼化物和结构金属间化合物的新路线。 由于复分解反应由于在熔盐基质中生长而在几秒钟内产生结晶材料,因此可以使用适当的添加剂来控制微晶尺寸和表面积。氮化钛是一种用于超级电容器电极的导电耐火陶瓷,将被合成以检验这一假设。 通过将高电子密度金属(例如锇)与小的共价键主族元素(例如硼)相结合,将产生一类新型超不可压缩硬质材料。 将开发遗传算法,使复分解反应能够在运行最少数量的反应的同时得到优化。研究生将通过化学系内部以及与材料科学、机械工程和工业合作伙伴的合作,学习物理性质的合成、表征和测量。本科生,包括来自代表性不足群体的本科生,将协助研究生进行研究,从而扩大材料化学领域未来的研究生库。 正在开发一门名为“这是一个物质世界”的新课程,该课程将使科学和非科学专业的学生更好地了解材料在现实世界中的重要性。然后,为本课程开发的课程将被重新配置,并用于覆盖从小学生到校友的更广泛受众。现代世界的基础是开发新的和改进的材料,例如用于运行计算机的掺杂硅和用于切割岩石的人造金刚石。修建道路。 固态复分解(交换)反应可以快速合成传统方法难以制备的材料。 由于复分解反应在几秒钟内产生结晶材料,由于在熔盐基质中生长,因此可以使用适当的添加剂控制晶粒的尺寸及其表面积。氮化钛是一种导电高温陶瓷,用于快速充电和放电的能量存储设备(称为超级电容器)的电极,将被合成以检验这一假设。 通过将高密度金属(例如锇)与小主族元素(例如硼)相结合,将产生一类新型超不可压缩硬质材料。 将开发称为遗传算法的计算机代码,以便在运行最少数量的反应的同时优化复分解反应。研究生将通过化学系内部以及与材料科学、机械工程和工业合作伙伴的合作,学习物理特性的合成、表征和测量。本科生,包括来自代表性不足群体的本科生,将协助研究生进行研究,从而扩大材料化学领域未来的研究生库。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Kaner其他文献
Patching laser-reduced graphene oxide with carbon nanodots
- DOI:
10.1039/c9nr01719d - 发表时间:
2019-06 - 期刊:
- 影响因子:6.7
- 作者:
Volker Strauss;Mit Muni;Arie Borenstein;Bolortuya Badamdorj;Tobias Heil;Matthew D. Kowal;Richard Kaner - 通讯作者:
Richard Kaner
Richard Kaner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Kaner', 18)}}的其他基金
Bond Strengthening and Grain Size Refinement in Superhard Metal Borides
超硬金属硼化物中的键强化和晶粒尺寸细化
- 批准号:
2312942 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Tuning Nanostructured Morphology in Superhard Metal Borides
调整超硬金属硼化物的纳米结构形态
- 批准号:
2004616 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
SusChEM: High Throughput Screening of Anti-fouling and Anti-bacterial Coating Films
SusChEM:防污抗菌涂膜的高通量筛选
- 批准号:
1337065 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
The Synthesis and Characterization of Ultra-Incompressible, Superhard Borides
超不可压缩、超硬硼化物的合成和表征
- 批准号:
0805357 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
NIRT: Engineering Conducting Polymer Nanofibers for Advanced Applications
NIRT:用于高级应用的工程导电聚合物纳米纤维
- 批准号:
0507294 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
Metathesis Routes to Nitrides and Nanotubes
氮化物和纳米管的复分解途径
- 批准号:
0073581 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Solid-State Metathesis Reactions Under Pressure
压力下的固态复分解反应
- 批准号:
9704964 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
基于固定路线营运车辆动力响应的桥梁快速巡检与状态评估方法研究
- 批准号:52378145
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
切换通信拓扑与不利道路线形耦合条件下多车队列系统协同控制
- 批准号:62303134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
气候变化对古丝绸之路交通路线变迁的影响研究
- 批准号:42371172
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
国家可持续议程创新示范区建设路径差异与发展路线图研究
- 批准号:42301326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于渔场不确定时空分布的远洋捕捞路线优化研究
- 批准号:72301225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Evolutionary routes to phenotypic convergence in vertebrates
脊椎动物表型趋同的进化途径
- 批准号:
NE/Z000149/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAS: Solution Routes Towards Metastable Functional Chalcogenides
CAS:亚稳态功能硫属化物的解决方案
- 批准号:
2333388 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Characterising Transport Routes in Dual-phase Molten-salt Membranes for Carbon Dioxide Separation
表征二氧化碳分离双相熔盐膜中的传输路径
- 批准号:
2875396 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship