Non-Homogeneous Harmonic Analysis, two weight estimates, and spectral problems

非齐次谐波分析、两次权重估计和谱问题

基本信息

  • 批准号:
    0501067
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT.PI's propose to concentrate their efforts on several classical problems inAnalysis and Spectral Theory that remained unsolved for the last 20--50years, due to the lack of appropriate technical tools. Among the problemsare:* bilipschitz equivalence for higher dimensional analogues of analyticcapacity; * two weight estimates for the Hilbert Transform;* well-posedness of the inverse scattering problem for the discreteSchrodinger operator,i.e., uniqueness of the inverse nonlinear Fourier transform;* selected problems of noncommutative harmonic analysisAlthough the problems span several different areas of analysis andmathematical physics, our recent research revealed striking connectionsbetween the proposed problems. To put it briefly, they all are unified bythe fact that in all of them the same type of singular kernels (usually theCauchy kernel) appears. Also, the problems share the same difficulty, thekernel got "spoiled'' by multiplication by virtually arbitrary functions(weights). Recent developments in the non-homogeneous harmonic analysis,which treats exactly this type of situations, made successful solution ofthe proposed problems plausible.Harmonic analysis investigates complex processes by representing them as asum of elementary ones (sinusoidal waves, wavelets) with well understoodbehavior. A central part of modern harmonic analysis deals with "singularintegral operators" of one type or another. Such operators are pervasive inthe scientific landscape: they turn up in mathematical physics, probability,engineering, image processing, etc. While the theory of singular integraloperators is now well developed (starting with works of Calderon and Zygmundand continued by numerous researchers after them), it deals with theoperators defined on a nice "smooth" set, like the usual Euclidean space.However, in many problems one needs to investigate such operators on a "bad"set, like surfaces with singularities and even on more pathological sets.The non-homogeneous harmonic analysis was introduced by the PI's to dealexactly with such situations: recent solution by X. Tolsa of the famoussubbaditivity problem for the analytic capacity is one of the mostimpressive applications of this PI's theory of nonhomogeneous analysis. PI'spropose to attack several classical problems, where the framework of thenon-homogeneous harmonic analysis appear naturally.
摘要.PI 建议将精力集中在分析和谱理论中的几个经典问题上,这些问题由于缺乏适当的技术工具而在过去 20--50 年中仍未得到解决。 其中的问题包括: * 分析能力的高维类似物的 bilipschitz 等价; * 希尔伯特变换的两个权重估计;* 离散薛定谔算子的逆散射问题的适定性,即逆非线性傅里叶变换的唯一性;* 非交换调和分析的选定问题尽管这些问题跨越了几个不同的分析和数学物理领域,我们最近的研究揭示了所提出的问题之间的惊人联系。简而言之,它们都是统一的,因为它们都出现了相同类型的奇异核(通常是柯西核)。此外,这些问题也有同样的困难,内核因与几乎任意函数(权重)相乘而被“破坏”。非齐次调和分析的最新发展恰好处理了此类情况,使得所提出的问题的成功解决成为可能调和分析通过将复杂过程表示为具有易于理解的行为的基本过程(正弦波、小波)来研究复杂过程。现代调和分析的核心部分涉及“奇异积分算子”。此类算子在科学领域中普遍存在:它们出现在数学物理、概率、工程、图像处理等领域。奇异积分算子的理论现在已经得到了很好的发展(从卡尔德隆和齐格蒙德的著作开始,许多研究人员在他们之后),它处理定义在一个很好的“光滑”集合上的算子,就像通常的欧几里得空间。然而,在许多问题中,我们需要在一个“坏”集合上研究这样的算子,比如曲面PI 引入了非齐次调和分析来精确处理此类情况:X. Tolsa 最近对分析能力的著名次不良性问题的解决方案是该 PI 理论最令人印象深刻的应用之一非均匀分析。 PI提出解决几个经典问题,其中非齐次调和分析的框架自然出现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Volberg其他文献

NONCOMMUTATIVE BOHNENBLUST–HILLE INEQUALITY IN THE HEISENBERG–WEYL AND GELL-MANN BASES WITH APPLICATIONS TO FAST LEARNING
海森堡-韦尔和盖尔曼基中的非交换 Bohnenblust-Hille 不等式及其在快速学习中的应用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph Slote;Alexander Volberg;Haonan Zhang
  • 通讯作者:
    Haonan Zhang
Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension-one Hausdorff measure ✩
如果谐波测度相对于同维一豪斯多夫测度绝对连续,则它是可校正的 ✩
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Acad;Sci;Ser. I Paris;Jonas Azzam;Steve Hofmann;J. M. Martell;S. Mayboroda;Mihalis Mourgoglou;X. Tolsa;Alexander Volberg
  • 通讯作者:
    Alexander Volberg

Alexander Volberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Volberg', 18)}}的其他基金

Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
  • 批准号:
    2154402
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
  • 批准号:
    1900268
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Calderon-Zygmund Operators in Highly Irregular Environments, and Applications
合作研究:高度不规则环境中的 Calderon-Zygmund 算子及其应用
  • 批准号:
    1600065
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Universality Phenomena and Some Hard Problems of Non-homogeneous Harmonic Analysis
合作研究:非齐次谐波分析的普遍性现象和一些难题
  • 批准号:
    1265549
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Bellman function, Harmonic Analysis and Operator Theory
合作研究:贝尔曼函数、调和分析和算子理论
  • 批准号:
    0758552
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Multidimensional and Non-Homogeneous Harmonic Analysis: Bellman Functions, Pertubations of Normal Operators and Two Weight Estimates of Singular Integrals
多维非齐次调和分析:贝尔曼函数、正规算子的摄动和奇异积分的两个权重估计
  • 批准号:
    0200713
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Three Measures on Fractals
数学科学:分形的三种测度
  • 批准号:
    9302728
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

非均质玄武岩中二氧化碳快速矿化反应运移机理研究
  • 批准号:
    42307271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非均质砂岩散射衰减实验测量与微结构散射效应解析
  • 批准号:
    42304144
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非均质结构堰塞坝漫顶溃决机理及溃坝模型研究
  • 批准号:
    42307196
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
干喷湿纺聚丙烯腈纤维微原纤结构塑性形变及均质化调控机理研究
  • 批准号:
    52303057
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习与物理规律的非均质含水层刻画与最优采样方案研究
  • 批准号:
    42302271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
  • 批准号:
    2154335
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
  • 批准号:
    2154321
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
  • 批准号:
    2154402
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
  • 批准号:
    1856719
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
  • 批准号:
    1900268
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了