Non-Homogeneous Harmonic Analysis, two weight estimates, and spectral problems
非齐次谐波分析、两次权重估计和谱问题
基本信息
- 批准号:0501067
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT.PI's propose to concentrate their efforts on several classical problems inAnalysis and Spectral Theory that remained unsolved for the last 20--50years, due to the lack of appropriate technical tools. Among the problemsare:* bilipschitz equivalence for higher dimensional analogues of analyticcapacity; * two weight estimates for the Hilbert Transform;* well-posedness of the inverse scattering problem for the discreteSchrodinger operator,i.e., uniqueness of the inverse nonlinear Fourier transform;* selected problems of noncommutative harmonic analysisAlthough the problems span several different areas of analysis andmathematical physics, our recent research revealed striking connectionsbetween the proposed problems. To put it briefly, they all are unified bythe fact that in all of them the same type of singular kernels (usually theCauchy kernel) appears. Also, the problems share the same difficulty, thekernel got "spoiled'' by multiplication by virtually arbitrary functions(weights). Recent developments in the non-homogeneous harmonic analysis,which treats exactly this type of situations, made successful solution ofthe proposed problems plausible.Harmonic analysis investigates complex processes by representing them as asum of elementary ones (sinusoidal waves, wavelets) with well understoodbehavior. A central part of modern harmonic analysis deals with "singularintegral operators" of one type or another. Such operators are pervasive inthe scientific landscape: they turn up in mathematical physics, probability,engineering, image processing, etc. While the theory of singular integraloperators is now well developed (starting with works of Calderon and Zygmundand continued by numerous researchers after them), it deals with theoperators defined on a nice "smooth" set, like the usual Euclidean space.However, in many problems one needs to investigate such operators on a "bad"set, like surfaces with singularities and even on more pathological sets.The non-homogeneous harmonic analysis was introduced by the PI's to dealexactly with such situations: recent solution by X. Tolsa of the famoussubbaditivity problem for the analytic capacity is one of the mostimpressive applications of this PI's theory of nonhomogeneous analysis. PI'spropose to attack several classical problems, where the framework of thenon-homogeneous harmonic analysis appear naturally.
摘要。PI建议将他们的精力集中在几种经典问题上没有分析和光谱理论上,由于缺乏适当的技术工具,在过去的20-50年中仍未解决。 在问题中:* Bilipschitz等效性,用于分析能力的更高维度类似物; *希尔伯特变换的两个重量估计;*反向散射问题的拟及性,即偏齿轮操作员,即,逆非线性傅立叶变换的独特性;*选择非交通谐波分析的选定问题,这些问题涵盖了分析的几个不同领域的分析领域,我们最近的研究表现出了疑虑的连接问题。简而言之,他们都统一了一个事实,即在所有人中都出现了相同类型的奇异核(通常是thecauchy kernel)。 Also, the problems share the same difficulty, thekernel got "spoiled'' by multiplication by virtually arbitrary functions(weights). Recent developments in the non-homogeneous harmonic analysis,which treats exactly this type of situations, made successful solution ofthe proposed problems plausible.Harmonic analysis investigates complex processes by representing them as asum of elementary ones (sinusoidal waves, wavelets) with well understoodbehavior. A central现代谐波分析的一部分涉及一种或另一种类型的“奇异企业”。 like the usual Euclidean space.However, in many problems one needs to investigate such operators on a "bad"set, like surfaces with singularities and even on more pathological sets.The non-homogeneous harmonic analysis was introduced by the PI's to dealexactly with such situations: recent solution by X. Tolsa of the famoussubbaditivity problem for the analytic capacity is one of the mostimpressive applications of this PI's theory of非均匀分析。 pi'spropose攻击了几个经典问题,在这种问题上,当时的均匀谐波分析的框架自然而然。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Volberg其他文献
NONCOMMUTATIVE BOHNENBLUST–HILLE INEQUALITY IN THE HEISENBERG–WEYL AND GELL-MANN BASES WITH APPLICATIONS TO FAST LEARNING
海森堡-韦尔和盖尔曼基中的非交换 Bohnenblust-Hille 不等式及其在快速学习中的应用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Joseph Slote;Alexander Volberg;Haonan Zhang - 通讯作者:
Haonan Zhang
Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension-one Hausdorff measure ✩
如果谐波测度相对于同维一豪斯多夫测度绝对连续,则它是可校正的 ✩
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
C. Acad;Sci;Ser. I Paris;Jonas Azzam;Steve Hofmann;J. M. Martell;S. Mayboroda;Mihalis Mourgoglou;X. Tolsa;Alexander Volberg - 通讯作者:
Alexander Volberg
Alexander Volberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Volberg', 18)}}的其他基金
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154402 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
- 批准号:
1900268 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Calderon-Zygmund Operators in Highly Irregular Environments, and Applications
合作研究:高度不规则环境中的 Calderon-Zygmund 算子及其应用
- 批准号:
1600065 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Universality Phenomena and Some Hard Problems of Non-homogeneous Harmonic Analysis
合作研究:非齐次谐波分析的普遍性现象和一些难题
- 批准号:
1265549 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Bellman function, Harmonic Analysis and Operator Theory
合作研究:贝尔曼函数、调和分析和算子理论
- 批准号:
0758552 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Multidimensional and Non-Homogeneous Harmonic Analysis: Bellman Functions, Pertubations of Normal Operators and Two Weight Estimates of Singular Integrals
多维非齐次调和分析:贝尔曼函数、正规算子的摄动和奇异积分的两个权重估计
- 批准号:
0200713 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Three Measures on Fractals
数学科学:分形的三种测度
- 批准号:
9302728 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
同质晶态/非晶态合金的可控制备及电催化析氧性能研究
- 批准号:22368044
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于自然分布区南缘同质园揭示鹅掌楸对气候变化的适应性响应
- 批准号:32360334
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于同质园实验的亚热带主要林分碳汇维持机制
- 批准号:32360382
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于时/空域光束形态的激光增材制造同质梯度组织制备机理
- 批准号:52365041
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
范德华同质结红外探测器中的非平衡载流子雪崩倍增机制研究
- 批准号:62304231
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154335 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154321 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154402 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
- 批准号:
1856719 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
- 批准号:
1900268 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant