Collaborative Research in Nanostructure Control via Surfactant Mixing and Polymerization
通过表面活性剂混合和聚合控制纳米结构的合作研究
基本信息
- 批准号:0436195
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-02-01 至 2009-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
University of Delaware/ University of California Santa BarbaraABSTRACT - 0436195/0436124Project SummaryMuch of nanotechnology is devoted to creating two-dimensional structures on surfaces. However,learning the composition-structure-function relationships for biomimetic self-assembly will lead to nanoscale, three-dimensional vesicle structures for specific tasks including drug delivery, catalysis, specific recognition, among others. This proposal addresses the science and engineering needed to advance the self-assembly of functional nano-containers of polymers and surfactants, based on our group's expertise with the combining the physics and chemistry of nanostructures with the self-assembly and specific recognition processes of biology. The basic theme is centered on the self-assembly of oppositely charged surfactants and/or hydrotropes into unilamellar vesicles that can be fixed by polymerization to yield stable, hollow capsules that can be further functionalized. Specific aims are:1. Study the formation and polymerization of vesicles formed from polymerizable surfactants andorganic and inorganic monomers to best retain the size, shape and polydispersity of templating vesicles;2. Modify and control vesicle properties adding block co-polymers to adjust the spontaneous curvature (size), bending elasticity (polydispersity) and the steric interactions between vesicles (stability). In particular, near equimolar mixtures of polymerizable anionic and cationic surfactants with copolymers that likely create monodisperse vesicle systems will be formulated;3. Examine the novel properties of vesicles formed in mixtures of surfactant and hydrotropes (which are weakly surface-active, amphiphilic, and highly water-soluble organic salts), and to probe microstructural changes therein caused by changes in pH or light exposure.Project 1 will involve synthesis and formulation carried out primarily at U. Delaware by Kaler'sgroup and microscopy characterization at UCSB by Zasadzinski's group. The formulations needed for project 2 will be done at UCSB and characterization will be carried out using light scattering and electron microscopy by Zasadzinski's group, and neutron spin-echo and neutron scattering by Kaler's group. Project 3 will be initiated at U. Delaware by Kaler's group and characterized by microscopy done in Zasadzinski's group. The reduction in time from 3 to 2 years will cause us to not be able to get as far in the project; however, all of the specific aims will be examined and the most promising routes identified.Intellectual Merit: The self-assembly of oppositely charged surfactants and hydrotropes opens newareas of biomimetic structures for exploration, and will likely put the process of vesicle formation under thermodynamic control. Exploiting thermodynamic control means being able to determine the size, polydispersity, stability, etc. of vesicles by simple manipulation of simple, inexpensive detergents. Chemical reactions (i.e., polymerization) to fix such structures open new ways to form nanoscale materials that retain the nanostructure of the template. The proposed work expands and links these two areas, and will provide both novel experimental observations and further theoretical understanding.Technical Impact: Surfactant formulations, particularly surfactant mixtures, are widely used inmany industrial processes. The ability to control surfactant microstructure by mixing surfactants or adding hydrotropes could provide new organic templates for novel organic and inorganic materials such as polymer latices and molecular sieves. Manufacturing polymerized vesicles cheaply could open the way to high-volume usages in printing or agricultural applications. Work with spontaneous vesicles made of biological surfactants will lead to useful pharmaceutical applications. Controlling the aggregation and fusion of vesicles is of crucial importance to drug delivery schemes, as is minimization of the free surfactant concentration.Broader Impact: The scientific aspects of this proposed work will enable discovery of newnanoscale surfactant architectures through the development of and understanding of their thermodynamic and mechanical properties, including the nature of their equilibrium state. Study of these mixtures has already led to fruitful reexamination of many of the fundamental dogmas of self-assembly. Study of both organic and inorganic polymerizations can open ways to make new materials that could have application beyond those discussed above. Undergraduate and graduate students involved in this work will be exposed to a range of characterization tools and appropriate analytical methods, and thereby be prepared for either academic or industrial work in this area. K-12 students will be exposed to concepts relevant to this work, including surfactant and polymer properties and elements of nanotechnology.Statement of Effect of Time Reduction:We have proposed three specific aims:1. Study the formation and polymerization of vesicles formed from polymerizable surfactantsand organic and inorganic monomers to best retain the size, shape and polydispersity oftemplating vesicles;2. Modify and control vesicle properties adding block co-polymers to adjust the spontaneouscurvature (size), bending elasticity (polydispersity) and the steric interactions between vesicles(stability). In particular, near equimolar mixtures of polymerizable anionic and cationicsurfactants with copolymers that likely create monodisperse vesicle systems will be formulated;3. Examine the novel properties of vesicles formed in mixtures of surfactant and hydrotropes(which are weakly surface-active, amphiphilic, and highly water-soluble organic salts), and toprobe microstructural changes therein caused by changes in pH or light exposure.Project 1 will involve synthesis and formulation carried out primarily at U. Delaware by Kaler'sgroup and microscopy characterization at UCSB by Zasadzinski's group. The formulationsneeded for project 2 will be done at UCSB and characterization will be carried out using lightscattering and electron microscopy by Zasadzinski's group, and neutron spin-echo and neutronscattering by Kaler's group. Project 3 will be initiated at U. Delaware by Kaler's group andcharacterized by microscopy done in Zasadzinski's group. The reduction in time from 3 to 2years will cause us to not be able to get as far in the project; however, all of the specific aims willbe examined at some level and the most promising routes identified for subsequent proposals.
特拉华大学/加利福尼亚大学圣塔芭芭拉·阿布斯特林业 - 0436195/0436124纳米技术的摘要致力于在表面上创建二维结构。但是,学习仿生自组装的组成结构函数关系将导致纳米级,三维囊泡结构,用于特定任务,包括药物输送,催化,特定识别等。该建议探讨了基于我们小组的专业知识与将纳米结构的物理和化学与自组装和特定的生物学识别过程相结合的聚合物和表面活性剂功能性纳米含量所需的科学和工程。基本主题以相对带电的表面活性剂和/或氢化物的自组件为中心,这些囊泡可以通过聚合来固定,以产生可以进一步功能化的稳定的空心胶囊。具体目标是:1。研究由可聚合表面活性剂和无机单体形成的囊泡的形成和聚合,以最好地保留模板囊泡的大小,形状和多分散性; 2。修改和控制囊泡性能添加了块共聚合物,以调节自发曲率(尺寸),弯曲弹性(多分散性)和囊泡之间的空间相互作用(稳定性)。特别是,将配制了可能产生单分散囊泡系统的共聚物的可分离阴离子和阳离子表面活性剂的近摩尔混合物; 3。检查在表面活性剂和氢化物混合物中形成的囊泡的新特性(它们的表面活性弱,两亲性和高度水溶性有机盐),以及探测其在pH或光照1的变化引起的微观结构变化。Projects1将涉及kal and contrubled and cartiral and cartrubles and cartrubles and kal and kal carried and kal kal areane kal, Zasadzinski小组的UCSB。项目2所需的配方将在UCSB上完成,并通过Zasadzinski的组以及Kaler组的Neutron Spin-Echo和中子散射来进行表征。项目3将由卡勒(Kaler)小组在美国特拉华州启动,其特征是在Zasadzinski小组中进行的显微镜。将时间从3年减少到2年将导致我们无法进入该项目。但是,将检查所有具体目标,并确定最有前途的路线。智能优点:相对带电的表面活性剂和氢化物的自组装为探索的仿生结构开辟了新的,并可能将囊泡形成的过程放在热力控制下。利用热力学控制意味着能够通过简单,廉价的洗涤剂的简单操纵来确定囊泡的尺寸,多分散性,稳定性等。 化学反应(即聚合)固定这样的结构,开辟了形成保留模板纳米结构的纳米级材料的新方法。提出的工作扩展了这两个领域,并将提供新颖的实验观察和进一步的理论理解。技术影响:表面活性剂配方,尤其是表面活性剂混合物,被广泛使用。通过混合表面活性剂或添加氢键来控制表面活性剂微结构的能力可以为新型有机和无机材料(例如聚合物乳酸和分子筛子)提供新的有机模板。廉价地制造聚合囊泡可以为印刷或农业应用中的大量使用开辟道路。使用由生物表面活性剂制成的自发囊泡的工作将导致有用的药物应用。控制囊泡的聚集和融合对药物输送方案至关重要,自由表面活性剂浓度的最小化也至关重要。Boader的影响:这项提出的工作的科学方面将使他们能够通过对其热力学和机械性质的发展以及包括其平等的newnanoscale表面活性剂结构,包括其平等的new newnoscale架构。对这些混合物的研究已经导致了许多自组装基本教条的富有成效的重新审查。对有机和无机聚合的研究都可以开放方法,以制造新材料,这些材料可以超越上述讨论。参与这项工作的本科生和研究生将接触到一系列特征工具和适当的分析方法,从而为该领域的学术或工业工作做好准备。 K-12学生将接触到与这项工作相关的概念,包括表面活性剂和聚合物特性以及纳米技术的要素。缩短时间的陈述:我们提出了三个具体目标:1。研究由可聚合表面活性剂和有机和无机单体形成的囊泡的形成和聚合,以最好地保留囊泡的大小,形状和多分散性; 2。修改和控制囊泡性能添加了块共聚合物,以调整自发性(尺寸),弯曲弹性(多分散性)和囊泡之间的空间相互作用(稳定性)。特别是,将配制了可能产生单分散囊泡系统的共聚物的可聚合阴离子和阳离子外染色剂的近摩尔混合物; 3。检查在表面活性剂和氢化物混合物中形成的囊泡的新特性(它们的表面活性弱,两亲性和高度水溶性的有机盐)以及pH或光暴露的toprobe微结构变化。 Zasadzinski小组的UCSB。针对项目2的配方将在UCSB上完成,并将使用Zasadzinski组的LightScattering和Electron显微镜进行表征,而Kaler的组中Neutron Spin-Echo和Neutralscattering。项目3将由Kaler的小组在美国特拉华州启动,并通过Zasadzinski小组中的显微镜进行表演。将时间从3年减少到2年将导致我们无法进入该项目。但是,所有特定目标都将在某种程度上检查,以及为后续提案所确定的最有希望的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Norman Wagner其他文献
Handlungsbedarf und anlaufende Aktivitäten vor dem Hintergrund der Bedrohung einheimischer Schwanzlurche durch einen neuen Salamander-Chytridpilz
蝾螈-壶菌
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
S. Lötters;Anja Geiger;A. Kerres;B. Krebs;Dagmar Ohlhoff;Dirk S. Schmeller;Benedikt R. Schmidt;S. Steinfartz;M. Veith;M. Vences;Norman Wagner - 通讯作者:
Norman Wagner
Vernetzung und Autochthonie nördlicher Arealrandpopulationen der Westlichen Smaragdeidechse (Lacerta bilineata)
Vernetzung und Autochthonie nördlicher Arearandpopulationen der Westlichen Smaragdeidechse (Lacerta bilineata)
- DOI:
10.17433/2.2016.50153380.66-72 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
U. Schulte;Dirk Alfermann;W. Böhme;U. Joger;Peter Sound;M. Veith;Norman Wagner;Aurelius Heym - 通讯作者:
Aurelius Heym
Influence of high hydrostatic pressure on protein clustering: Implications for processing and macroscopic crystallization
- DOI:
10.1016/j.bpj.2022.11.1952 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Brian Paul;Susana Cristina Marujo Teixeira;Eric M. Furst;Abraham M. Lenhoff;Norman Wagner - 通讯作者:
Norman Wagner
A Broadband 3-D Numerical FEM Study on the Characterization of Dielectric Relaxation Processes in Soils
土壤介电弛豫过程表征的宽带 3-D 数值有限元研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Norman Wagner;M. Loewer - 通讯作者:
M. Loewer
Norman Wagner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Norman Wagner', 18)}}的其他基金
Collaborative Research: DMREF: Rheostructurally-informed Neural Networks for geopolymer material design
合作研究:DMREF:用于地质聚合物材料设计的流变结构信息神经网络
- 批准号:
2118944 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
RAPID: development of a local epidemiological population balance model informed by UAV and WVD data
RAPID:根据无人机和 WVD 数据开发当地流行病学人口平衡模型
- 批准号:
2040503 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Mid-scale RI:1 (M1:IP): A world-class Neutron Spin Echo Spectrometer for the Nation: UD-NIST-UMD Consortium
中型 RI:1 (M1:IP):面向国家的世界级中子自旋回波谱仪:UD-NIST-UMD 联盟
- 批准号:
1935956 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of a thermodynamically consistent rheological constitutive equation for thixotropic suspensions connecting particle properties to thermodynamics and rheology
开发触变悬浮液的热力学一致流变本构方程,将颗粒特性与热力学和流变学联系起来
- 批准号:
1804911 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of a thermodynamically consistent, robust model for thixotropic suspensions
开发热力学一致、稳健的触变悬浮液模型
- 批准号:
1235863 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
GOALI: Colliods, Surfactants, and Polyelectrolytes
目标:胶体、表面活性剂和聚电解质
- 批准号:
0625047 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
NIRT: Nanoscale Directed Self-Assembly in Electrical and Optical Fields
NIRT:电学和光学领域的纳米级定向自组装
- 批准号:
0506701 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Molecular Transport in Nanostructured Materials: A Hierarchical Approach to Design Nanostructured Membranes
纳米结构材料中的分子传输:设计纳米结构膜的分层方法
- 批准号:
0085461 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Undergraduate Research Program in Chemical Engineering
化学工程本科研究计划
- 批准号:
9820322 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Acquisition of Rheological Research Equipment
购置流变研究设备
- 批准号:
9977451 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
梯度亲钠纳米结构堆用高温热管复合吸液芯的吸钠铺展及传热特性研究
- 批准号:12305174
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
模型氧化物表面担载氧化物纳米结构的界面限域效应研究
- 批准号:22372158
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
InCo双金属单原子纳米酶原子结构的精确调控及中性氧还原机理研究
- 批准号:22305108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可调谐MOF-纳米线复合网络微结构增强的双频谱联用肺癌检测研究
- 批准号:12374342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
螺旋层状结构的矿化纤维素纳米晶材料的仿生构建及其促牙槽骨组织再生的机制研究
- 批准号:82301152
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SI2-SSE: Collaborative Research: Integrated Tools for DNA Nanostructure Design and Simulation
SI2-SSE:合作研究:DNA 纳米结构设计和模拟的集成工具
- 批准号:
1740212 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: Integrated Tools for DNA Nanostructure Design and Simulation
SI2-SSE:合作研究:DNA 纳米结构设计和模拟的集成工具
- 批准号:
1740282 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Stepwise Functionalization and Surface Modification for ZnO Nanostructure-based Biosensors
合作研究:基于 ZnO 纳米结构的生物传感器的逐步功能化和表面修饰
- 批准号:
1264488 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Stepwise Functionalization and Surface Modification for ZnO Nanostructure-based Biosensors
合作研究:基于 ZnO 纳米结构的生物传感器的逐步功能化和表面修饰
- 批准号:
1264508 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Nanostructure Growth Process Modeling and Optimal Experimental Strategies for Repeatable Fabrication of Nanostructures for Application in Photovoltaics
合作研究:纳米结构生长过程建模和可重复制造光伏应用纳米结构的最佳实验策略
- 批准号:
1000720 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant