Reduced Stochastic Dynamics for Spatially Extended Systems

空间扩展系统的简化随机动力学

基本信息

  • 批准号:
    0405944
  • 负责人:
  • 金额:
    $ 10.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-15 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

The investigator and his colleagues study several examples mimicking the behavior of more complex, realistic systems in atmosphere/ocean dynamics. The main focus here is on understanding the importance of various low-dimensional chaotic structures in full dynamics with many degrees of freedom and deriving low-dimensional stochastic models which correctly capture the interaction of the low-dimensional chaos with fast scales. In addition, significance of non-Gaussian small-scale processes is analyzed in the context of the Barotropic Quasi-Geostrophic Equations.An area of great importance for many problems in science and engineering involves derivation of effective equations for a small number of suitable variables capturing the essence of large systems with many unknowns. Important examples include evolution of the coupled atmosphere/ocean systems, folding of large proteins in molecular dynamics, distribution of air-pollution over a long period of time, etc. Effective equations are required first because these systems vastly overwhelm direct numerical computations. In addition, often only a few variables in the problem provide most of the needed information. In the above examples, these essential variables might be the seasonal average temperature in the US, a few angles describing the folding changes in the protein, or the primary direction for the spread of an air-pollutant from its source. The main aim of this work is to further advance the stochastic mode-reduction strategy originally developed for derivation of the effective equations in the atmosphere/ocean dynamics. Several idealized problems are examined in order to develop a systematic approach for more realistic systems and validate the applicability of the method in various settings.
研究人员及其同事研究了一些模仿大气/海洋动力学中更复杂,现实系统的行为的例子。 这里的主要重点是了解各种自由度的全部动力学中各种低维混沌结构的重要性,并得出了低维的随机模型,这些模型正确地捕获了与快速尺度的低维混乱的相互作用。 此外,在正交的准型地藻方程的背景下,分析了非高斯小规模过程的重要性。对于许多科学和工程中许多问题的重要性领域涉及有效方程的衍生,这些方程涉及少数合适的变量,这些变量捕获了许多未知数的大型系统的本质。 重要的例子包括耦合大气/海洋系统的演变,在分子动力学中折叠大蛋白,长时间的空气污染的分布等。首先需要有效的方程式,因为这些系统极大地压倒了直接的数值计算。此外,问题中通常只有几个变量提供了大多数所需的信息。 在上面的示例中,这些基本变量可能是美国的季节平均温度,一些角度描述了蛋白质的折叠变化,或者是从其来源传播空气污染物的主要方向。 这项工作的主要目的是进一步促进最初用于在大气/海洋动力学中推导有效方程的随机模式减少策略。检查了几个理想化的问题,以开发一种系统的方法,以实现更真实的系统,并验证该方法在各种设置中的适用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Ilya Timofeyev其他文献

Modeling information flow in a computer processor with a multi-stage queuing model
  • DOI:
    10.1016/j.physd.2024.134446
    10.1016/j.physd.2024.134446
  • 发表时间:
    2025-01-01
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mohammad Daneshvar;Richard C. Barnard;Cory Hauck;Ilya Timofeyev
    Mohammad Daneshvar;Richard C. Barnard;Cory Hauck;Ilya Timofeyev
  • 通讯作者:
    Ilya Timofeyev
    Ilya Timofeyev
Asynchronous stochastic price pump
  • DOI:
    10.1016/j.physa.2018.10.028
    10.1016/j.physa.2018.10.028
  • 发表时间:
    2019-02-15
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Misha Perepelitsa;Ilya Timofeyev
    Misha Perepelitsa;Ilya Timofeyev
  • 通讯作者:
    Ilya Timofeyev
    Ilya Timofeyev
共 2 条
  • 1
前往

Ilya Timofeyev的其他基金

Collaborative Research: Mechanisms of Multicellular Self-Organization in Myxococcus Xanthus
合作研究:黄粘球菌多细胞自组织机制
  • 批准号:
    1903270
    1903270
  • 财政年份:
    2019
  • 资助金额:
    $ 10.5万
    $ 10.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Proposal: Density-enhanced data assimilation for hyperbolic balance laws
合作提案:双曲平衡定律的密度增强数据同化
  • 批准号:
    1620278
    1620278
  • 财政年份:
    2016
  • 资助金额:
    $ 10.5万
    $ 10.5万
  • 项目类别:
    Standard Grant
    Standard Grant
Parametric Estimation of Stochastic Differential Equations under Indirect Observability
间接可观性下随机微分方程的参数估计
  • 批准号:
    1109582
    1109582
  • 财政年份:
    2011
  • 资助金额:
    $ 10.5万
    $ 10.5万
  • 项目类别:
    Standard Grant
    Standard Grant
Multiscale Numerical Strategies for Models with Quadratic Nonlinearity
二次非线性模型的多尺度数值策略
  • 批准号:
    0713793
    0713793
  • 财政年份:
    2007
  • 资助金额:
    $ 10.5万
    $ 10.5万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

数据驱动下双记忆混合控制船舶非线性耦合运动的随机动力学研究
  • 批准号:
    12372033
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
布里渊随机光纤激光器模式调控技术及其动力学特性研究
  • 批准号:
    62305311
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非平衡动力学下热机的耗散机制以及最大输出功率的随机控制
  • 批准号:
    12302032
  • 批准年份:
    2023
  • 资助金额:
    10.00 万元
  • 项目类别:
    青年科学基金项目
深度学习中随机梯度下降法的动力学分析及其与模型泛化能力的关系探索
  • 批准号:
    12371512
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
非线性噪声驱动的非自治随机发展方程的动力学行为研究
  • 批准号:
    12301299
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
    $ 10.5万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Dynamics and harvesting of stochastic populations
职业:随机群体的动态和收获
  • 批准号:
    2339000
    2339000
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
    $ 10.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337426
    2337426
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
    $ 10.5万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Learning stochastic spatiotemporal dynamics in single-molecule genetics
职业:学习单分子遗传学中的随机时空动力学
  • 批准号:
    2339241
    2339241
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
    $ 10.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Long time dynamics and genealogies of stochastic reaction-diffusion systems
随机反应扩散系统的长时间动力学和系谱
  • 批准号:
    2348164
    2348164
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
    $ 10.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant