Collaborative Research: Photonic and Electronic Devices Based on Self-Assembling DNA Templates
合作研究:基于自组装DNA模板的光子和电子器件
基本信息
- 批准号:1610213
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Collaborative Research: Photonic and Electronic Device Fabrication by Templating on Self-Assembled DNA Origami NanostructuresNon-Technical:The major goal of this project is the development of reliable, bioinspired, molecular assembly protocols and materials for fabricating functional photonic (light-active) and electronic (electron-active) devices. Biological structures with nanometer-scale dimensions are able to self assemble using principles of molecular recognition, principles that can now be harnessed for production of technologically useful materials, objects, and devices. Fabrication techniques that mimic biological nanometer scale assembly strategies promise to transform modern electronics manufacturing by reducing the need for increasingly expensive lithographic fabrication equipment and facilities, decreasing reliance on toxic, rare earth elements, and increasing the energy efficiency of producing and operating computational and communications devices. Besides advancing science and engineering issues critical to future device manufacturing processes, this project will provide educational and research training opportunities for students at the undergraduate, post-graduate and high school levels. This project will train students in the unique combination of biochemical and physical methods of modern nanotechnology that are relevant for industrial and academic careers. Through Project SEED (Summer Educational Experience for the Disadvantaged), high school students from disadvantaged economic backgrounds will participate in laboratory research during the summer months to become acquainted with the emerging field of nanoscience. The project coordinators will continue to actively recruit participants from demographic groups typically under-represented in the science-technology-engineering-mathematical (STEM) disciplines.Technical:Specific objectives of this three year project include: 1) development of metallic clusters for significant enhancement of Raman scattering signals by templating metal nanoparticles on DNA origami, then using these Raman-bright clusters as photonic devices for tagging and tracking specific cell-types during cell-sorting; 2) application of newly prototyped tetrahedral origami for functional 3D metal cluster assemblies including single electron transistors and chiral plasmonic devices; and 3) fabrication and testing of a 51 kilobase DNA origami for larger, oriented helical structures for photonic devices. Development of self-assembling systems for bottom-up fabrication has been a long sought after goal of nanotechnology. The particular merit of this project stems from the convergence of recent advances in DNA-based self-assembly methods with new understanding of plasmonically coupled metal nanoparticle clusters for a wide range of optoelectronic applications. Intellectual merit of the project also derives from the interdisciplinary collaboration that couples a biochemist and a physicist on a productive team with a history of successful scientific research and educational activities. The project will lead to development of alternative, cheaper (most steps are in aqueous solution) and more versatile fabrication methods for composite bio-nano-devices. These nanostructures may be useful in the development of naturally biocompatible devices with strong potential for use in biomedical applications. Results from this study may provide major impacts to a range of applications, including electronic devices with decreased size, weight, power consumption, and heat generation for mobile sensing and
合作研究:通过自组装 DNA 折纸纳米结构模板制造光子和电子器件非技术性:该项目的主要目标是开发可靠的、受生物启发的分子组装方案和材料,用于制造功能性光子(光活性)和电子器件(电子活性)设备。具有纳米级尺寸的生物结构能够利用分子识别原理进行自组装,这些原理现在可以用于生产技术上有用的材料、物体和设备。模仿生物纳米级组装策略的制造技术有望通过减少对日益昂贵的光刻制造设备和设施的需求、减少对有毒稀土元素的依赖以及提高生产和操作计算和通信设备的能源效率来改变现代电子制造。除了推进对未来设备制造工艺至关重要的科学和工程问题外,该项目还将为本科生、研究生和高中学生提供教育和研究培训机会。该项目将培训学生现代纳米技术生化和物理方法的独特组合,这些方法与工业和学术职业相关。通过 SEED 项目(弱势群体夏季教育体验),经济背景较差的高中生将在夏季参与实验室研究,以熟悉新兴的纳米科学领域。项目协调员将继续积极从科学技术工程数学(STEM)学科中代表性不足的人口群体中积极招募参与者。技术:这个为期三年的项目的具体目标包括:1)开发金属簇以显着增强通过在 DNA 折纸上模板化金属纳米颗粒来产生拉曼散射信号,然后使用这些拉曼明亮的簇作为光子器件,在细胞分选过程中标记和跟踪特定的细胞类型; 2)将新原型四面体折纸应用于功能性3D金属簇组件,包括单电子晶体管和手性等离子体器件; 3) 制造和测试用于光子器件的更大定向螺旋结构的 51 kb DNA 折纸。开发用于自下而上制造的自组装系统一直是纳米技术长期追求的目标。该项目的独特优点源于基于DNA的自组装方法的最新进展与对用于广泛光电应用的等离激元耦合金属纳米粒子簇的新理解的融合。该项目的智力价值还源于跨学科合作,将生物化学家和物理学家结合成一个富有成效的团队,具有成功的科学研究和教育活动的历史。该项目将导致开发替代的、更便宜的(大多数步骤在水溶液中)和更通用的复合生物纳米器件制造方法。这些纳米结构可用于开发天然生物相容性装置,在生物医学应用中具有强大的应用潜力。这项研究的结果可能会对一系列应用产生重大影响,包括减小尺寸、重量、功耗和热量产生的电子设备,用于移动传感和
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chiral quasiparticle tunneling between quantum Hall edges in proximity with a superconductor
靠近超导体的量子霍尔边缘之间的手性准粒子隧道效应
- DOI:10.1103/physrevb.100.121403
- 发表时间:2019-04-26
- 期刊:
- 影响因子:3.7
- 作者:M. Wei;A. Draelos;A. Seredinski;C. Ke;H. Li;Y. Mehta;K. Watanabe;T. Taniguchi;M. Yamamoto;S. Tarucha;G. Finkelstein;F. Amet;I. Borzenets
- 通讯作者:I. Borzenets
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gleb Finkelstein其他文献
Efficient CVD Growth of Single-Walled Carbon Nanotubes on Surfaces Using Carbon Monoxide Precursor
使用一氧化碳前驱体在表面上高效 CVD 生长单壁碳纳米管
- DOI:
10.1021/nl025634d - 发表时间:
2002-07-17 - 期刊:
- 影响因子:10.8
- 作者:
Bo Zheng;Chenguang Lu;G. Gu;A. Makarovski;Gleb Finkelstein;Jie Liu - 通讯作者:
Jie Liu
Effects of the environment on the switching current in graphene-based Josephson Junctions
环境对石墨烯基约瑟夫森结开关电流的影响
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ivan Borzenets; Chung;Gleb Finkelstein - 通讯作者:
Gleb Finkelstein
Gleb Finkelstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gleb Finkelstein', 18)}}的其他基金
Collaborative Research: Optimizing KTaO3 Superconductivity for Quantum Applications
合作研究:优化 KTaO3 超导性以实现量子应用
- 批准号:
2327535 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: Optimizing KTaO3 Superconductivity for Quantum Applications
合作研究:优化 KTaO3 超导性以实现量子应用
- 批准号:
2327535 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Interference effects in superconductor-quantum Hall hybrid structures
超导体-量子霍尔混合结构中的干涉效应
- 批准号:
2004870 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
EAGER: Braiding of Majorana Zero Modes in the Quantum Hall - Superconductor Hybrids
EAGER:量子霍尔中马约拉纳零模式的编织 - 超导混合体
- 批准号:
1743907 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EAGER: Braiding of Majorana Zero Modes in the Quantum Hall - Superconductor Hybrids
EAGER:量子霍尔中马约拉纳零模式的编织 - 超导混合体
- 批准号:
1743907 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Photonic and Electronic Devices Based on Self-Assembling DNA Templates
合作研究:基于自组装DNA模板的光子和电子器件
- 批准号:
1232239 - 财政年份:2012
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
NER: Electronic Nanostructures Based on Self-Assembled DNA Scaffolds: Toward Biochemical Sensing
NER:基于自组装 DNA 支架的电子纳米结构:迈向生化传感
- 批准号:
0609288 - 财政年份:2006
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
CAREER: Local Probing of Electron-electron Interactions in Nanostructures
职业:纳米结构中电子-电子相互作用的局部探测
- 批准号:
0239748 - 财政年份:2003
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似国自然基金
基于新型光子晶体细胞力学显微镜的乳腺癌转移力学生物学研究
- 批准号:12202212
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有机杂化超高品质因子微腔非线性光子学研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
自组装DNA折纸模板指导贵金属图案化生长调控及其纳米光子学性质研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
平带转角二维材料超快光子学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向纳米光子学的新型等离激元混合纳米光源研究
- 批准号:12174244
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
- 批准号:
2311544 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: Developing optimally customized-mode-selective photonic lanterns to enable the characterization of hundreds of exoplanets on solar system.
合作研究:开发最佳定制模式选择光子灯笼,以表征太阳系上数百颗系外行星。
- 批准号:
2308360 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
- 批准号:
2311543 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: SiGeSn-based heterostructures for intersubband photonic materials
合作研究:基于SiGeSn的子带间光子材料异质结构
- 批准号:
2320178 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media
合作研究:非厄米光子介质中新型共振的第一性原理控制
- 批准号:
2326699 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant