Collaborative Proposal: Density-enhanced data assimilation for hyperbolic balance laws

合作提案:双曲平衡定律的密度增强数据同化

基本信息

  • 批准号:
    1620278
  • 负责人:
  • 金额:
    $ 19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

The research addresses the urgent need to develop efficient computational tools to process the dramatically increasing amounts of observational data. Management of many complex systems (e.g., traffic) has to confront the uncertainty in both their current and future state. This uncertainty typically increases with time, leading to less accurate and useful predictions. Thus, it is important to develop practical methods for "adjusting" the probabilistic state of the system and reducing uncertainty using observational data. This approach is broadly referred to as data assimilation. We will develop novel techniques for incorporating observational data to reduce uncertainty in predictions in two particular areas of national interest: fluid dynamics (e.g., flood forecasting) and traffic management. Both are of vital importance to sustainable development of our society.We propose to develop a novel data assimilation framework for physical processes whose time-dynamics is described by hyperbolic conservation laws. This framework takes advantage of a kinetic representation of hyperbolic systems and, thus, availability of explicit deterministic equations for the time evolution of probability density function for dependent variables. These equations can often be derived and solved exactly, yielding explicit analytical solutions for the marginal and joint probability density functions. For systems of hyperbolic conservation laws an appropriate closure assumption is needed. Thus, the proposed framework relies on the kinetic representation, which takes the form of linear equations for joint probability density functions. Bayesian updating is utilized to incorporate observations into the prediction.
该研究解决了开发有效的计算工具的迫切需求,以处理大量观察数据的数量。许多复杂系统(例如流量)的管理必须面对当前和未来状态的不确定性。这种不确定性通常会随着时间而增加,从而导致准确和有用的预测。因此,开发“调整”系统概率状态并使用观察数据降低不确定性的实用方法很重要。这种方法通常称为数据同化。我们将开发新的技术,用于合并观察数据,以减少国家感兴趣的两个特定领域的预测中的不确定性:流体动态(例如洪水预测)和交通管理。两者对于我们社会的可持续发展都至关重要。我们建议为物理过程开发一种新颖的数据同化框架,其时间动力学由双曲线保护法描述。该框架利用双曲线系统的动力学表示,因此,对于因变量而言,对于概率密度函数的时间演变而言,明确确定性方程的可用性。这些方程通常可以准确地得出和求解,从而为边际和关节概率密度函数提供明确的分析解决方案。对于双曲线保护法系统,需要适当的封闭假设。因此,所提出的框架依赖于动力学表示,该动力学表示以接头概率密度函数为线性方程式。贝叶斯更新用于将观测值纳入预测中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Ilya Timofeyev其他文献

Modeling information flow in a computer processor with a multi-stage queuing model
  • DOI:
    10.1016/j.physd.2024.134446
    10.1016/j.physd.2024.134446
  • 发表时间:
    2025-01-01
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mohammad Daneshvar;Richard C. Barnard;Cory Hauck;Ilya Timofeyev
    Mohammad Daneshvar;Richard C. Barnard;Cory Hauck;Ilya Timofeyev
  • 通讯作者:
    Ilya Timofeyev
    Ilya Timofeyev
Asynchronous stochastic price pump
  • DOI:
    10.1016/j.physa.2018.10.028
    10.1016/j.physa.2018.10.028
  • 发表时间:
    2019-02-15
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Misha Perepelitsa;Ilya Timofeyev
    Misha Perepelitsa;Ilya Timofeyev
  • 通讯作者:
    Ilya Timofeyev
    Ilya Timofeyev
共 2 条
  • 1
前往

Ilya Timofeyev的其他基金

Collaborative Research: Mechanisms of Multicellular Self-Organization in Myxococcus Xanthus
合作研究:黄粘球菌多细胞自组织机制
  • 批准号:
    1903270
    1903270
  • 财政年份:
    2019
  • 资助金额:
    $ 19万
    $ 19万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Parametric Estimation of Stochastic Differential Equations under Indirect Observability
间接可观性下随机微分方程的参数估计
  • 批准号:
    1109582
    1109582
  • 财政年份:
    2011
  • 资助金额:
    $ 19万
    $ 19万
  • 项目类别:
    Standard Grant
    Standard Grant
Multiscale Numerical Strategies for Models with Quadratic Nonlinearity
二次非线性模型的多尺度数值策略
  • 批准号:
    0713793
    0713793
  • 财政年份:
    2007
  • 资助金额:
    $ 19万
    $ 19万
  • 项目类别:
    Standard Grant
    Standard Grant
Reduced Stochastic Dynamics for Spatially Extended Systems
空间扩展系统的简化随机动力学
  • 批准号:
    0405944
    0405944
  • 财政年份:
    2004
  • 资助金额:
    $ 19万
    $ 19万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

指向提议者的共情关怀对第三方惩罚行为的影响:心理、脑与计算机制
  • 批准号:
    32371102
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
经济博弈中提议者对先前第三方干预者的分配公平性研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于深度层次特征相似性度量的视觉跟踪方法研究
  • 批准号:
    61773397
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
构造类型专家系统及其开发工具的研究
  • 批准号:
    68875006
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRCNS US-German Research Proposal: Quantitative and Computational Dissection of Glutamatergic Crosstalk at Tripartite Synapses
CRCNS 美德研究提案:三方突触谷氨酸能串扰的定量和计算剖析
  • 批准号:
    10612169
    10612169
  • 财政年份:
    2023
  • 资助金额:
    $ 19万
    $ 19万
  • 项目类别:
Proposal of the thermodynamic characteristics for predicting the onset of a liquid-liquid transition
预测液-液转变开始的热力学特性的提议
  • 批准号:
    20K03790
    20K03790
  • 财政年份:
    2020
  • 资助金额:
    $ 19万
    $ 19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
CRCNS: US-France Data Sharing Proposal: Open science & cloud computing of MEEG
CRCNS:美法数据共享提案:开放科学
  • 批准号:
    10428625
    10428625
  • 财政年份:
    2020
  • 资助金额:
    $ 19万
    $ 19万
  • 项目类别:
CRCNS: US-France Data Sharing Proposal: Open science & cloud computing of MEEG
CRCNS:美法数据共享提案:开放科学
  • 批准号:
    10266850
    10266850
  • 财政年份:
    2020
  • 资助金额:
    $ 19万
    $ 19万
  • 项目类别:
CRCNS: US-Spain Research Proposal: Computational Modeling of PNS Stimulation
CRCNS:美国-西班牙研究提案:PNS 刺激的计算模型
  • 批准号:
    10163843
    10163843
  • 财政年份:
    2019
  • 资助金额:
    $ 19万
    $ 19万
  • 项目类别: