FRG: Collaborative
FRG:协作
基本信息
- 批准号:0354382
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
FRG collaborative Award with lead DMS-0354353 of Ono, Zhang and Kudla with Co-PI Yang. This project involves arithmetic geometry and number theory andfocuses on a systematic study of cycles on Shimura varieties and applications. The fascination of diophantine problems -- the study of whole numbersolutions of polynomial equations-- goes back to ancient times.The mathematical techniques developed in the last 50 year toattack such questions have lead to significant advances in our knowledgeof this subject, for example the proof of Fermat's last theorem.These same tools have, meanwhile, proved to be of great importancein cryptography, the construction of new algorithms for computer scienceand new error correcting codes for electronics.Shimura varieties are the geometric objectsassociated to systems of diophantine equations with a great degree of symmetry. Their diophantine properties have deep connection with many important parts of mathematics.An extensive study will be made of the arithmetic geometry ofcycles on Shimura varieties, with an emphasis on the interactionof their heights, arithmetic intersections and density propertieswith modular forms and special values of L-functions and theirderivatives. Applications will be made to Gauss's class numberproblem, equidistribution problems for cycles on Shimuravarieties, and the Andre-Oort conjecture, and the Tate and Bloch-Beilinsonconjectures. This collaborative project will takeadvantage of recent developments including nonvanishing propertiesof Fourier coefficients of modular forms,the theory of Borcherds forms and their connections with theta functions, and integral representations of Langlands L-functions. A long range goal of the project is to establish relationsbetween the height pairings, periods, and algebraic cycles and thederivatives of L-functions.
FRG合作奖与Ono,Zhang和Kudla的Lead DMS-0354353与Co-Pi Yang的合作奖。该项目涉及对Shimura品种和应用的系统研究的算术几何学和数量理论和集合。 The fascination of diophantine problems -- the study of whole numbersolutions of polynomial equations-- goes back to ancient times.The mathematical techniques developed in the last 50 year toattack such questions have lead to significant advances in our knowledgeof this subject, for example the proof of Fermat's last theorem.These same tools have, meanwhile, proved to be of great importancein cryptography, the construction of new algorithms for computer scienceand new error校正电子设备的代码。Shimura品种是与具有很高对称性的Diophantine方程系统相关的几何对象。他们的养生特性与数学的许多重要部分具有密切的联系。将对Shimura品种的算术几何形状进行广泛的研究,重点是其高度,算术相互作用和密度性质的相互作用,并具有指示性和特殊价值的Loctuntions and untunctions and untunctions and untunctions and'sdertiment and esterntiment and esterntiment and derdunciptions。将在高斯的类杂志问题上提出应用程序,Shimuravarieties周期的等分分配问题以及Andre-oort猜想,以及Tate和Bloch-BeilinsonConjoctures。 这个协作项目将对最新的发展(包括模块化形式的傅立叶系数,Borcherds形式的理论及其与Theta函数的联系以及Langlands L功能的整体表示)的最新发展。该项目的一个远距离目标是在高度配对,周期和代数周期和L功能的theverations之间建立关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Kudla其他文献
Stephen Kudla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Kudla', 18)}}的其他基金
Arithmetic Siegel-Weil Formulas and Arithmetic Theta Lifting
算术 Siegel-Weil 公式和算术 Theta 提升
- 批准号:
0200292 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Arithmetic Special Cycles and Derivatives of L-functions
L 函数的算术特殊循环和导数
- 批准号:
9970506 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Derivatives of Eisenstein Series L - Functions and the Theta Correspondence
爱森斯坦 L 级数的导数 - 函数和 Theta 对应关系
- 批准号:
9622987 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: The Theta Correspondence and Central Derivatives of L-Functions
数学科学:L 函数的 Theta 对应关系和中心导数
- 批准号:
9302539 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Eisenstein Series, Theta Functions and Special Values of L-Functions
数学科学:爱森斯坦级数、Theta 函数和 L 函数的特殊值
- 批准号:
9003109 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: The Weil-Siegel Formula and Its Applications
数学科学:Weil-Siegel 公式及其应用
- 批准号:
8704375 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Seesaw Dual Pairs and the Weil-SiegelFormula
数学科学:跷跷板对偶和韦尔-西格尔公式
- 批准号:
8413013 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Continuing Grant
Theta Functions, Geodesic Cycles and Periods (Mathematical Sciences)
Theta 函数、测地线循环和周期(数学科学)
- 批准号:
8201660 - 财政年份:1982
- 资助金额:
-- - 项目类别:
Standard Grant
Arithmetic Applications of the Weil Representation
Weil 表示的算术应用
- 批准号:
7802817 - 财政年份:1978
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
双单亲遗传贝类线粒体与核氧化磷酸化基因动态协作调控机制
- 批准号:32302965
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
降水变化下土壤动物协作效应对土壤有机质形成过程的影响
- 批准号:42307409
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
反硝化厌氧甲烷氧化菌群信号交流协作机制与调控策略
- 批准号:52300068
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant