Handling Noise-Contaminated Data and Nonunique Identification Results in Wireless Sensor Networks for Structural Health Monitoring

处理结构健康监测无线传感器网络中的噪声污染数据和非唯一识别结果

基本信息

  • 批准号:
    0332350
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-01 至 2005-01-31
  • 项目状态:
    已结题

项目摘要

PI: Jin-Song Pei, University of Oklahoma This SGER will support exploratory research on wireless sensor networks for structural health monitoring (SHM) with focus on handling noise-contaminated data measurements and nonunique system identification results, the two main issues that have been identified with the most critical and urgent needs in the context of the rapidly growing sensor networks, especially wireless sensor networks. Untested aggressive novel ideas are presented in the proposal while analytical development as well as numerical and experimental validation will be carried out in the project. Therefore, the project is considered as exploratory and high risk. The project research will be undertaken through collaboration between the University of Oklahoma (OU) and Massachusetts Institute of Technology (MIT). The PI at OU will advise a PhD student at MIT to conduct key parts of the research efforts. Experimental study will be conducted at OU with the participation of the PI's team and the student from MIT during each summer while analytical and numerical work will be carried out throughout the two academic years. The main research ideas stem from the PI's successful PhD work at Columbia University on transparent and engineered Artificial Neural Networks (ANNs) with a development plan expanded drastically in both breadth and depth. Serving as a proof-of-concept for the PI's novel ideas on sensor network design and data interpretation, the results will be used to build the PI's academic credentials for her future submission for NSF CAREER grant and participations in future major NSF solicitations such as .Sensors and Sensor Networks.. As an individual member and an institution alternate representative of OU at NEES Consortium, the PI will apply the ideas and methods developed in this project not only to SHM but also to earthquake engineering, especially those NSF NEES related activities. The intellectual merit of the proposed activity includes advancing knowledge on sensor technology and information technology for civil infrastructure health monitoring. Central to this research is to handle real-world situations and uncertainties, namely noise-contaminated data and nonunique system identification results. The attempts are two folds: In terms of data processing and interpretation, novel and ambitious ideas including several types of transparent and engineered Artificial Neural Networks (ANNs) and other techniques (such as improved ERA/OKID, demystified HHT/EMD) will be tested to 1) identify structural nonlinearities, 2) de-noise and 3) overcome nonuniqueness. In terms of sensors and sensor network configurations, existing commercially available sensors will be compared in terms of performance for civil engineering applications with the focus on practical issues related to wireless MEMS sensors applications. New sensor network design methodology will be developed with concentration on solving noise contamination and nonuniqueness. With respect to broader impacts, this SGER project will facilitate cross-institutional and cross-regional communications and partnership by bringing together researchers at OU and MIT. Research results will be disseminated widely in publications and academic conferences. Development of algorithms will be carried out in a generic form so that the research will impact a wide range of applications involving data mining. The proposed research will promote applications of state-of-the-art technologies to traditional fields such as civil engineering. This research will help strengthen the safety of our nation's civil infrastructures and improve preparedness for natural and man-made hazards.
PI:Jin-Song Pei,俄克拉荷马大学 该 SGER 将支持用于结构健康监测 (SHM) 的无线传感器网络的探索性研究,重点关注处理噪声污染的数据测量和非唯一系统识别结果,这是已确定的两个主要问题在传感器网络,特别是无线传感器网络快速增长的背景下,提出了最关键和最紧迫的需求。 该提案提出了未经测试的激进新颖想法,同时该项目将进行分析开发以及数值和实验验证。 因此,该项目被认为是探索性的、高风险的。 该项目研究将通过俄克拉荷马大学(OU)和麻省理工学院(MIT)之间的合作进行。 开放大学的 PI 将建议麻省理工学院的博士生进行研究工作的关键部分。 每年夏天,实验研究将在 OU 进行,由 PI 团队和麻省理工学院的学生参与,而分析和数值工作将在两个学年中进行。 主要研究思想源于 PI 在哥伦比亚大学成功完成的关于透明和工程化人工神经网络 (ANN) 的博士工作,其开发计划在广度和深度上都得到了极大扩展。作为 PI 在传感器网络设计和数据解释方面的新颖想法的概念验证,研究结果将用于为 PI 未来提交 NSF 职业资助和参与未来主要 NSF 征集(例如 .传感器和传感器网络.. 作为 OU 在 NEES 联盟的个人成员和机构候补代表,PI 将把本项目中开发的想法和方法不仅应用于 SHM,而且应用于地震工程,特别是 NSF NEES 相关活动。 拟议活动的智力价值包括推进民用基础设施健康监测的传感器技术和信息技术知识。 这项研究的核心是处理现实世界的情况和不确定性,即噪声污染的数据和非唯一的系统识别结果。这些尝试有两个方面:在数据处理和解释方面,将测试新颖而雄心勃勃的想法,包括几种类型的透明和工程人工神经网络(ANN)和其他技术(例如改进的 ERA/OKID、揭秘的 HHT/EMD) 1) 识别结构非线性,2) 去噪,3) 克服非唯一性。 在传感器和传感器网络配置方面,现有商用传感器将在土木工程应用的性能方面进行比较,重点是与无线 MEMS 传感器应用相关的实际问题。 将开发新的传感器网络设计方法,重点解决噪声污染和非唯一性。 就更广泛的影响而言,该 SGER 项目将通过汇集 OU 和 MIT 的研究人员来促进跨机构和跨地区的沟通和伙伴关系。研究成果将在出版物和学术会议上广泛传播。 算法的开发将以通用形式进行,以便研究将影响涉及数据挖掘的广泛应用。 拟议的研究将促进最先进的技术在土木工程等传统领域的应用。 这项研究将有助于加强我国民用基础设施的安全,并提高对自然和人为灾害的防范能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jin-Song Pei其他文献

Jin-Song Pei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jin-Song Pei', 18)}}的其他基金

BRITE Relaunch: Improving Structural Health by Advancing Interpretable Machine Learning for Nonlinear Dynamics
BRITE 重新启动:通过推进非线性动力学的可解释机器学习来改善结构健康
  • 批准号:
    2227495
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
BRITE Relaunch: Improving Structural Health by Advancing Interpretable Machine Learning for Nonlinear Dynamics
BRITE 重新启动:通过推进非线性动力学的可解释机器学习来改善结构健康
  • 批准号:
    2227495
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
FPGA and Microprocessor-Based Smart Wireless Sensing with Embedded Nonlinear Algorithms for Structural Health Monitoring
基于 FPGA 和微处理器的智能无线传感,具有嵌入式非线性算法,用于结构健康监测
  • 批准号:
    0626401
  • 财政年份:
    2006
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant

相似国自然基金

非线性噪音驱动的非自治BBM方程拉回随机吸引子的稳定性
  • 批准号:
    12301303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
下丘Hcy通过PKC/CREB调控GABAAR在噪音性耳鸣发生中的作用与耳聋左慈丸干预机制研究
  • 批准号:
    82304854
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
开放系统演化中环境噪音的表征及其在精密测量中的应用
  • 批准号:
    12374337
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
爪蟾噪音性听力损伤和再生修复的机制研究
  • 批准号:
    32370536
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
针对高噪音基因组测序数据的肿瘤演化推断算法开发及其应用研究
  • 批准号:
    82241236
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Down Field Spectroscopy at Ultrahigh Fields
超高场下场光谱
  • 批准号:
    10490830
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
MI-CARES: The Michigan Cancer and Research on the Environment Study
MI-CARES:密歇根癌症与环境研究
  • 批准号:
    10491837
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
Down Field Spectroscopy at Ultrahigh Fields
超高场下场光谱
  • 批准号:
    10172054
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
Down Field Spectroscopy at Ultrahigh Fields
超高场下场光谱
  • 批准号:
    10669231
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
MI-CARES: The Michigan Cancer and Research on the Environment Study
MI-CARES:密歇根癌症与环境研究
  • 批准号:
    10336238
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了