Impact of Polarization-Mode Dispersion on Fiber Nonlinearities

偏振模色散对光纤非线性的影响

基本信息

  • 批准号:
    0320816
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-01 至 2006-08-31
  • 项目状态:
    已结题

项目摘要

0320816AgrawalEven though the polarization-mode dispersion (PMD) phenomenon has been studied extensively in recent years, most of the research on PMD has been carried out within the linear approximation in which all fiber nonlinearities are neglected. Although this approach has provided considerable physical insight, it cannot be used for real lightwave systems in which nonlinear effects such as self- and cross-phase modulation (SPM and XPM) are not generally negligible. For the same reason, it cannot be used in the soliton regime where the nonlinear effects are used for sustaining solitons. What is needed is a comprehensive research program that studies the impact of PMD on various nonlinear effects such as SPM, XPM, four-wave mixing (FWM), and stimulated Raman scattering. The primary goal of the proposed research is to develop a new theoretical framework that is capable of including the impact of PMD on several important nonlinear effects occurring inside optical fibers. More specifically, we plan to study the impact of PMD on SPM, XPM, FWM, and stimulated Raman scattering. The PMD problem is generally quite complicated because of its stochastic nature. Most of the research so far on PMD has ignored fiber nonlinearities because it considers the state of polarization of each frequency component of the pulse separately. This approach cannot be used for real lightwave systems in which the nonlinear effects are not generally negligible. To remedy this situation, the PI proposes a research program in which the PMD effects will be incorporated by solving the underlying nonlinear Schrodinger equation with the moment method. This technique will allow us to find the stochastic but ordinary differential equations for several important pulse parameters such as the position, width, chirp, and energy.A somewhat different approach is needed for handling the PMD effects on FWM and stimulated Raman scattering. These two nonlinear effects are increasingly being used for making parametric and Raman amplifiers. Fiber lengths used for making such amplifiers are long enough that PMD effects cannot be ignored. The PI has already begun to focus on the Raman-amplification problem and has developed a simple model that allows the PI to find the average and standard deviation of the PMD-induced fluctuations in the amplified signal. He plans to extend this technique to the case of parametric amplification. Although most of the proposed research is of theoretical nature, the PI intends to verify the theoretical predictions in collaboration with other experimental groups.
0320816Agrawal 尽管近年来偏振模色散(PMD)现象得到了广泛的研究,但大多数关于 PMD 的研究都是在忽略所有光纤非线性的线性近似内进行的。尽管这种方法提供了相当多的物理洞察力,但它不能用于真实的光波系统,在这种系统中,自相位调制和交叉相位调制(SPM 和 XPM)等非线性效应通常不可忽略。出于同样的原因,它不能用于使用非线性效应来维持孤子的孤子状态。 我们需要的是一个综合性的研究计划,研究 PMD 对各种非线性效应(例如 SPM、XPM、四波混频 (FWM) 和受激拉曼散射)的影响。 本研究的主要目标是开发一个新的理论框架,能够涵盖 PMD 对光纤内部发生的几种重要非线性效应的影响。更具体地说,我们计划研究 PMD 对 SPM、XPM、FWM 和受激拉曼散射的影响。由于其随机性,PMD 问题通常相当复杂。迄今为止,大多数关于 PMD 的研究都忽略了光纤非线性,因为它分别考虑了脉冲每个频率分量的偏振状态。这种方法不能用于非线性效应通常不可忽略的真实光波系统。为了纠正这种情况,PI 提出了一项研究计划,其中将通过使用矩法求解基础非线性薛定谔方程来纳入 PMD 效应。这项技术将使我们能够找到几个重要脉冲参数(例如位置、宽度、线性调频脉冲和能量)的随机常微分方程。需要采用稍微不同的方法来处理 PMD 对 FWM 和受激拉曼散射的影响。这两种非线性效应越来越多地用于制造参数放大器和拉曼放大器。 用于制造此类放大器的光纤长度足够长,以至于 PMD 效应不容忽视。 PI 已经开始关注拉曼放大问题,并开发了一个简单的模型,使 PI 能够找到放大信号中 PMD 引起的波动的平均值和标准偏差。他计划将该技术扩展到参数放大的情况。尽管大多数拟议的研究都是理论性质的,但 PI 打算与其他实验组合作验证理论预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Govind Agrawal其他文献

Govind Agrawal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Govind Agrawal', 18)}}的其他基金

Novel photonic devices based on the concept of space-time duality
基于时空二象性概念的新型光子器件
  • 批准号:
    1933328
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
GOALI: A comprehensive study of nonlinear phenomena in multimode optical fibers for enhancing the performance of optical communication systems
目标:全面研究多模光纤中的非线性现象,以提高光通信系统的性能
  • 批准号:
    1505636
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Ultracompact Nonlinear Photonic Devices with SOI Technology
采用 SOI 技术的超紧凑非线性光子器件
  • 批准号:
    0801772
  • 财政年份:
    2008
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
U.S.-France Cooperative Research: Nonlinear Optics and Laser Dynamics
美法合作研究:非线性光学和激光动力学
  • 批准号:
    0003636
  • 财政年份:
    2001
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Distributed Amplification with Dispersion Management for Fiber-Optic Communication Systems
光纤通信系统的分布式放大和色散管理
  • 批准号:
    9903580
  • 财政年份:
    1999
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
U.S.-Japan Cooperative Research on Photonic Memory Devices
美日光子存储器件合作研究
  • 批准号:
    9809932
  • 财政年份:
    1998
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Study of Cross-Phase Modulation in Optical Fibers
光纤交叉相位调制的研究
  • 批准号:
    9010599
  • 财政年份:
    1990
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

基于极化转换人工结构的宽带多模式多极化轨道角动量性能调控研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于极化相干散射模型的多模式SAR农作物高度反演研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
适用于快速辐射传输模式(ARMS)的全极化求解方案及解析伴随模式研究
  • 批准号:
    U2142212
  • 批准年份:
    2021
  • 资助金额:
    267 万元
  • 项目类别:
    专项基金项目
基于极化相干散射模型的多模式SAR农作物高度反演研究
  • 批准号:
    42171387
  • 批准年份:
    2021
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
二维纳米材料声子极化激元的传输以及模式调控研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

RadioForegrounds+: Unveiling the complexity of radio foregrounds for the detectability of the CMB polarization B-mode
RadioForegrounds:揭示无线电前景的复杂性,以实现 CMB 极化 B 模式的可检测性
  • 批准号:
    10101603
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    EU-Funded
ShEEP Request for the purchase of a research- grade Cell Imaging Multi-mode Reader
ShEEP 请求购买研究级细胞成像多模式读取器
  • 批准号:
    10739194
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
Development of polarization vortex beam mode demultiplexer by use of liquid crystal polarization hologram
利用液晶偏振全息图开发偏振涡旋光束模式解复用器
  • 批准号:
    20K14789
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigation of emerging technologies for use in Polarization Scramblers and Mode Converters
研究用于偏振扰频器和模式转换器的新兴技术
  • 批准号:
    556630-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Alliance Grants
Investigation of emerging technologies for use in Polarization Scramblers and Mode Converters
研究用于偏振扰频器和模式转换器的新兴技术
  • 批准号:
    556630-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了