ITR: Optical Processing of Information in Doped Semiconductors
ITR:掺杂半导体中信息的光学处理
基本信息
- 批准号:0312491
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2007-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award was made on a 'small' category proposal submitted in response to the ITR solicitation, NSF-02-168. It supports theoretical research to explore the storage and processing of information by optical techniques in semiconductors doped with impurities. Diluted impurities in semiconductors represent the solid state analogue of a collection of atoms. Unlike an atomic gas, impurities are (i) frozen spatially, and (ii) are embedded in an optically active host. State-of-the-art Nan-optical techniques can address a single impurity localized in a semiconductor. The optical properties of the host can be used to efficiently control the internal degrees of freedom of the impurities where the information is encoded. A novel aspect of this work lies in the focus on a solid-state system, with potential technological applications, where new quantum optical effects can be investigated. The research seeks to identify reliable schemes for the realization of information technology devices using the electronic and spin degrees of freedom of the impurities. The quantum nature of these systems will be taken into account and exploited. Impurities are a collection of identical objects, and this property can be used to efficiently encode information. A major question concerns the actual viability of these schemes. Investigations of optical and electronic properties of impurities and quantum kinetics simulations will fill the gap between model and real systems. Microscopic calculations will help to identify the most suitable materials. Future information networks may exchange information using light, eventually at the level of single photons. At the same time, the storage of information will require matter-based memories. The research aims to advance the knowledge of a system representing the ideal interface between light and matter, and will give direction for future efficient and secure communication technologies. The processing of information by ultrafast optical control in the proposed system may well be at the base of new revolutionary computing machines. Graduate and undergraduate students will be trained in actively applying physical ideas from quantum and statistical mechanics to information technology. The specific system considered in this project provides an excellent active-learning benchmark for understanding fundamental concepts in physics. With the help of collaborations, students involved in this project will be exposed to materials science, quantum optics, and non-equilibrium statistical mechanics. The research involves developing numerical codes for quantum kinetics equations and microscopic properties of materials. This will improve student's skills in designing numerical codes to solve complex problems. %%%This award was made on a 'small' category proposal submitted in response to the ITR solicitation, NSF-02-168. It supports theoretical research to explore the storage and processing of information by optical techniques in semiconductors doped with impurities. Diluted impurities in semiconductors represent the solid state analogue of a collection of atoms. Unlike an atomic gas, impurities are (i) frozen spatially, and (ii) are embedded in an optically active host. State-of-the-art Nan-optical techniques can address a single impurity localized in a semiconductor. The optical properties of the host can be used to efficiently control the internal degrees of freedom of the impurities where the information is encoded. A novel aspect of this work lies in the focus on a solid-state system, with potential technological applications, where new quantum optical effects can be investigated. The research seeks to identify reliable schemes for the realization of information technology devices using the electronic and spin degrees of freedom of the impurities. The quantum nature of these systems will be taken into account and exploited. Impurities are a collection of identical objects, and this property can be used to efficiently encode information. A major question concerns the actual viability of these schemes. Investigations of optical and electronic properties of impurities and quantum kinetics simulations will fill the gap between model and real systems. Microscopic calculations will help to identify the most suitable materials. Future information networks may exchange information using light, eventually at the level of single photons. At the same time, the storage of information will require matter-based memories. The research aims to advance the knowledge of a system representing the ideal interface between light and matter, and will give direction for future efficient and secure communication technologies. The processing of information by ultrafast optical control in the proposed system may well be at the base of new revolutionary computing machines. Graduate and undergraduate students will be trained in actively applying physical ideas from quantum and statistical mechanics to information technology. The specific system considered in this project provides an excellent active-learning benchmark for understanding fundamental concepts in physics. With the help of collaborations, students involved in this project will be exposed to materials science, quantum optics, and non-equilibrium statistical mechanics. The research involves developing numerical codes for quantum kinetics equations and microscopic properties of materials. This will improve student's skills in designing numerical codes to solve complex problems. ***
该奖项是在响应ITR招标的“小型”类别提案中颁发的,NSF-02-168。它支持理论研究,以通过光学技术在充满杂质的半导体中探索信息的存储和处理。半导体中稀释的杂质代表了原子集合的固态类似物。与原子气体不同,杂质在空间上是(i)冷冻的,(ii)嵌入光学活性的宿主中。 最先进的NAN光学技术可以解决半导体中定位的单个杂质。主机的光学特性可用于有效控制信息编码的杂质的内部自由度。这项工作的一个新方面在于关注固态系统,并具有潜在的技术应用,可以研究新的量子光学效应。该研究旨在使用杂质的电子和自旋程度来确定可靠的方案,以实现信息技术设备。这些系统的量子性质将被考虑并利用。杂质是相同对象的集合,该属性可用于有效地编码信息。一个主要问题是这些方案的实际生存能力。对杂质和量子动力学模拟的光学和电子特性的研究将填补模型和实际系统之间的空白。微观计算将有助于确定最合适的材料。 未来的信息网络可能会使用光线交换信息,最终在单个光子的级别上。同时,信息的存储将需要基于问题的记忆。该研究旨在促进代表光和物质之间理想接口的系统的知识,并为未来的高效和安全的通信技术提供指导。通过提议的系统中的超快光控制对信息的处理很可能位于新的革命计算机的基础上。 研究生和本科生将接受从量子和统计力学应用于信息技术的物理思想的培训。该项目中考虑的特定系统为理解物理学的基本概念提供了出色的主动学习基准。在合作的帮助下,参与该项目的学生将接触材料科学,量子光学和非平衡统计力学。该研究涉及开发用于量子动力学方程和材料微观特性的数值代码。这将提高学生设计数值代码以解决复杂问题的技能。该奖项是在响应ITR招标(NSF-02-168)提交的“小”类别提案上颁发的。它支持理论研究,以通过光学技术在充满杂质的半导体中探索信息的存储和处理。半导体中稀释的杂质代表了原子集合的固态类似物。与原子气体不同,杂质在空间上是(i)冷冻的,(ii)嵌入光学活性的宿主中。 最先进的NAN光学技术可以解决半导体中定位的单个杂质。主机的光学特性可用于有效控制信息编码的杂质的内部自由度。这项工作的一个新方面在于关注固态系统,并具有潜在的技术应用,可以研究新的量子光学效应。该研究旨在使用杂质的电子和自旋程度来确定可靠的方案,以实现信息技术设备。这些系统的量子性质将被考虑并利用。杂质是相同对象的集合,该属性可用于有效地编码信息。一个主要问题是这些方案的实际生存能力。对杂质和量子动力学模拟的光学和电子特性的研究将填补模型和实际系统之间的空白。微观计算将有助于确定最合适的材料。 未来的信息网络可能会使用光线交换信息,最终在单个光子的级别上。同时,信息的存储将需要基于问题的记忆。该研究旨在促进代表光和物质之间理想接口的系统的知识,并为未来的高效和安全的通信技术提供指导。通过提议的系统中的超快光控制对信息的处理很可能位于新的革命计算机的基础上。 研究生和本科生将接受从量子和统计力学应用于信息技术的物理思想的培训。该项目中考虑的特定系统为理解物理学的基本概念提供了出色的主动学习基准。在合作的帮助下,参与该项目的学生将接触材料科学,量子光学和非平衡统计力学。该研究涉及开发用于量子动力学方程和材料微观特性的数值代码。这将提高学生设计数值代码以解决复杂问题的技能。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlo Piermarocchi其他文献
All-optical four-state magnetization reversal in (Ga,Mn)As ferromagnetic semiconductors
(Ga,Mn)As铁磁半导体中的全光四态磁化反转
- DOI:
10.1063/1.3634031 - 发表时间:
2011 - 期刊:
- 影响因子:4
- 作者:
M. Kapetanakis;P. Lingos;Carlo Piermarocchi;Jigang Wang;I. Perakis - 通讯作者:
I. Perakis
Carlo Piermarocchi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlo Piermarocchi', 18)}}的其他基金
Elements: Software: NSCI: A Quantum Electromagnetics Simulation Toolbox (QuEST) for Active Heterogeneous Media by Design
要素: 软件:NSCI:用于主动异质介质设计的量子电磁仿真工具箱 (QuEST)
- 批准号:
1835267 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Computational analysis of nonlinear electromagnetics in disordered photonic systems
无序光子系统中非线性电磁学的计算分析
- 批准号:
1408115 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Optical Processing of Information in Doped Semiconductors
掺杂半导体中信息的光学处理
- 批准号:
0605801 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
曲面基底光学微结构的“5+X”架构六轴联动加工与在机测量技术研究
- 批准号:52335010
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
纳米孪晶金刚石刀具超精密切削蓝宝石光学元件的加工机理与技术基础
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
纳米孪晶金刚石刀具超精密切削蓝宝石光学元件的加工机理与技术基础
- 批准号:52275466
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
织构约束增强的极紫外光刻光学超光滑表面的弹性发射抛光加工理论与技术
- 批准号:62275249
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
面向光学微结构超精密制造的加工-测量一体化机器人系统研究
- 批准号:
- 批准年份:2020
- 资助金额:287 万元
- 项目类别:
相似海外基金
光電気化学的手法に立脚した新規ナノ加工技術の確立
基于光电化学方法的新型纳米加工技术的建立
- 批准号:
23K26625 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
DNA repair pathway coordination during damage processing
损伤处理过程中 DNA 修复途径的协调
- 批准号:
10748479 - 财政年份:2024
- 资助金额:
-- - 项目类别:
CAREER: Semiconductor on Nitride PhoXonic Integrated Circuit (SONIC) Platform for Chip-Scale RF and Optical Signal Processing
职业:用于芯片级射频和光信号处理的氮化物 PhoXonic 集成电路 (SONIC) 平台上的半导体
- 批准号:
2340405 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Optical control of nuclear spin-spin couplings and its application to quantum information processing
核自旋-自旋耦合的光控制及其在量子信息处理中的应用
- 批准号:
23H01131 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)