ITR: Computational Design of Strongly Correlated Materials Based on a Combination of the Dynamical Mean Field and the GW Methods
ITR:基于动态平均场和引力场方法相结合的强相关材料的计算设计
基本信息
- 批准号:0312478
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award was made on a 'small' category proposal submitted in response to the ITR solicitation, NSF-02-168. It supports collaborative computational and theoretical research between groups at Rutgers University and New Jersey Institute of Technology through award #0342290 that aims for a more realistic theory of strongly correlated electron materials. The PIs aim to construct a computational approach for the study, design and visualization of properties of materials containing strongly correlated electron systems.The theoretical foundations of this work are based on a non-perturbative many-body method involving on a combination of dynamical mean field and GW theories, which can yield material-specific predictions and interpretation of properties of solids. The PIs' objectives are to: (a) implement this approach using the high-performance, all-electron, full-potential, relativistic linear-muffin-tin orbital (LMTO) code for crystals, slabs, and periodic polymers called "LMTART;" (b) enhance performance so that Green functions, self-energies, and polarization operators on the frequency axis can be handled for complicated systems with many atoms per unit cell; (c) design and implement user-friendly interfaces and visualization capabilities for calculations of correlated electronic systems, creating a fast, powerful, database enabled and Web integrated Material Information and Design Laboratory (MINDLab) for the benefit and use in physics, material science, engineering, and educational communities; (e) test and apply this information technology enabled quantum many-body theory tool by tackling frontier problems of material science such as computational design of magnetic semiconductors and interpretation of de Haas van Alphen experiments in heavy fermion systems.MINDLab would enhance the infrastructure for research and education; it has the potential to advance discovery and understanding of materials while promoting teaching, training and learning through powerful visualization techniques. %%%This award was made on a 'small' category proposal submitted in response to the ITR solicitation, NSF-02-168. It supports collaborative computational and theoretical research between groups at Rutgers University and New Jersey Institute of Technology through award #0342290 that aims for a more realistic theory of strongly correlated electron materials. Strongly correlated electron materials display unusual phenomena such as high-temperature superconductivity, colossal magnetoresistance, giant optical non-linearities and large thermoelectric coefficients. These systems are at the frontier of materials science, and the variety of behavior they exhibit as well as their complexity makes their study intellectually challenging, and the prospects for applications exciting.The PIs aim to construct a computational approach for the study, design and visualization of properties of materials containing strongly correlated electron systems To tackle the complexity of real materials new theoretical methods, algorithms, and computer programs will be developed. By means of these novel information technology tools for computation and data generation, technologically relevant compounds containing many atoms per unit cell may be studied at a fundamental level while also including important material-specific detail. Data visualization enables access to more abstract theoretical quantities required to capture the physics of electronic correlation. The PIs' objectives include the design and implementation of a computational tool for correlated electronic systems, a fast, powerful, database enabled and Web integrated Material Information and Design Laboratory (MINDLab). MINDLab would enhance the infrastructure for research and education; it has the potential to advance discovery and understanding of materials while promoting teaching, training and learning through powerful visualization techniques. ***
该奖项是在响应ITR招标的“小型”类别提案中颁发的,NSF-02-168。它通过奖项#0342290奖,旨在建立更现实的电子材料理论,以支持罗格斯大学和新泽西理工学院的团体之间的合作计算和理论研究。 PI旨在为研究,设计和可视化包含密切相关的电子系统的材料的性质的计算方法。这项工作的理论基础是基于一种非扰动多体方法,涉及动态平均场的组合和GW理论,可以产生特定于材料的预测和固体性质的解释。 PIS的目标是:(a)使用高性能,全电子,全电力,相对论线性松饼轨道(LMTO)代码来实现此方法,用于晶体,平板和周期性聚合物,称为“ lmtart”; “ (b)提高性能,以便可以为每个单位细胞许多原子的复杂系统处理绿色功能,自我能量和极化算子; (c)设计和实施用户友好的接口和可视化功能,以计算相关的电子系统,创建快速,功能强大,启用数据库和网络集成的材料信息和设计实验室(MindLab),以实现物理,材料科学,材料科学的利益和使用工程和教育社区; (e)通过解决材料科学的前沿问题,例如磁性半导体的计算设计以及对重型费米昂系统中的de Haas van Alphen实验的解释,测试和应用此信息技术启用了量子多体型理论工具。Mindlab将增强研究基础架构和教育;它有可能在通过强大的可视化技术促进,培训和学习的同时提高发现和理解材料。该奖项是在响应ITR招标(NSF-02-168)提交的“小”类别提案上颁发的。它通过奖项#0342290奖,旨在建立更现实的电子材料理论,以支持罗格斯大学和新泽西理工学院的团体之间的合作计算和理论研究。密切相关的电子材料表现出异常现象,例如高温超导性,巨大的磁性,巨大的光学非线性和大型热电系数。这些系统处于材料科学的边界,它们表现出的各种行为以及它们的复杂性使他们的研究在智力上具有挑战性,并且应用程序的前景令人兴奋。PIS旨在为研究,设计和可视化构建计算方法将开发包含密切相关的电子系统的材料的性质,以应对真实材料的复杂性新理论方法,算法和计算机程序的复杂性。通过这些新颖的信息技术工具用于计算和数据生成,可以在基本层面研究包含许多单位细胞原子的技术相关化合物,同时还包括重要的特定材料细节。数据可视化可以访问捕获电子相关物理所需的更抽象的理论量。 PIS的目标包括用于关联电子系统的计算工具的设计和实施,快速,功能强大,启用数据库和Web集成的材料信息和设计实验室(MindLab)。 MindLab将增强研究和教育的基础设施;它有可能在通过强大的可视化技术促进,培训和学习的同时提高发现和理解材料。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel Kotliar其他文献
Clean realization of Hund's physics near the Mott transition:
NiS2
under pressure
洪德物理学在莫特转变附近的清晰实现:压力下的 NiS2
- DOI:
10.1103/physrevb.109.045146 - 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
Ina Park;B. Jang;Dong Wook Kim;J. H. Shim;Gabriel Kotliar - 通讯作者:
Gabriel Kotliar
Gabriel Kotliar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriel Kotliar', 18)}}的其他基金
DMREF/Collaborative Research: Designing, Understanding and Functionalizing Novel Superconductors and Magnetic Derivatives
DMREF/合作研究:新型超导体和磁性衍生物的设计、理解和功能化
- 批准号:
1435918 - 财政年份:2014
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
EAGER: A Data-Intensive Instrument for Strongly Correlated System Material Design
EAGER:用于强相关系统材料设计的数据密集型工具
- 批准号:
1342921 - 财政年份:2013
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative ITR: Computational Design of Magnetic and Superconducting Transitions Based on Cluster DMFT Approach to Electronic Structure Calculation
协作 ITR:基于电子结构计算的簇 DMFT 方法的磁和超导转变的计算设计
- 批准号:
0606096 - 财政年份:2006
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Network Cluster of Advanced Workstations for First Principles Electronic Structure Calculations of Complex Materials
MRI:获取先进工作站网络集群,用于复杂材料的第一原理电子结构计算
- 批准号:
0116068 - 财政年份:2001
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
U.S.-Czech Materials Research on Many-Body Correlations in Calculations of Realistic Electronic Structure of Solids
美国-捷克材料研究在实际固体电子结构计算中的多体相关性
- 批准号:
9907893 - 财政年份:1999
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
相似国自然基金
基于多精度计算机试验的航空设备多函数型响应质量设计研究
- 批准号:72371128
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
超宽禁带半导体固溶体合金中p型透明导电氧化物材料设计与计算分析
- 批准号:12374074
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于机器学习和相图计算耦合方法的γ′相强化型高熵高温合金的加速设计及其性能研究
- 批准号:52371007
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于多尺度计算模型设计仿I型胶原蛋白的纳米纤维
- 批准号:
- 批准年份:2020
- 资助金额:64 万元
- 项目类别:面上项目
基于计算机试验的函数型响应稳健参数和容差一体化设计研究
- 批准号:71902089
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative ITR: Computational Design of Magnetic and Superconducting Transitions Based on Cluster DMFT Approach to Electronic Structure Calculation
协作 ITR:基于电子结构计算的簇 DMFT 方法的磁和超导转变的计算设计
- 批准号:
0606498 - 财政年份:2006
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Collaborative ITR: Computational Design of Magnetic and Superconducting Transitions Based on Cluster DMFT Approach to Electronic Structure Calculation
协作 ITR:基于电子结构计算的簇 DMFT 方法的磁和超导转变的计算设计
- 批准号:
0606096 - 财政年份:2006
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
ITR: Computational Design of Strongly Correlated Materials Based on a Combination of the Dynamical Mean Field and the GW Methods
ITR:基于动态平均场和引力场方法相结合的强相关材料的计算设计
- 批准号:
0604531 - 财政年份:2005
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
ITR: Collaborative Research: (ASE+NHS+EVS)-(sim+dmc+int): In Silico De Novo Protein Design: A Dynamically Data Driven, (DDDAS), Computational and Experimental Framework
ITR:协作研究:(ASE NHS EVS)-(sim dmc int):计算机从头蛋白质设计:动态数据驱动、(DDDAS)、计算和实验框架
- 批准号:
0429534 - 财政年份:2004
- 资助金额:
$ 23万 - 项目类别:
Continuing grant
ITR: Collaborative Research: (ASE+NHS+EVS)-(sim+dmc+int): In Silico De Novo Protein Design: A Dynamically Data Driven, (DDDAS), Computational and Experimental Framework
ITR:协作研究:(ASE NHS EVS)-(sim dmc int):计算机从头蛋白质设计:动态数据驱动、(DDDAS)、计算和实验框架
- 批准号:
0426691 - 财政年份:2004
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant