Improved Simulations of Cosmic Plasmas: Measurements and Modeling Studies of Thermal Energy Charge Transfer in Support of Ground-Based Astronomy
改进的宇宙等离子体模拟:支持地面天文学的热能电荷转移的测量和建模研究
基本信息
- 批准号:0307203
- 负责人:
- 金额:$ 25.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AST 0307203SavinIt has long been recognized that thermal energy charge transfer (CT) of singly- and doubly chargedions with atomic hydrogen plays an important role in determining the ionization structure, thermalstructure, emission spectrum, and absorption spectrum of planetary nebulae, H II regions, Lya clouds, the intergalactic medium (IGM), and shocks in supernova remnants and Herbig-Haro objects. Ground-based spectroscopic observations of these sources are used to address many fundamental questions in astrophysics such as the primordial He abundance, the chemical evolution of the universe, the shape of the metagalactic radiation field as a function of redshift, galactic chemical evolution, and stellar nucleosynthesis. Of particular importance to address these issues are reliable thermal energy CT rate coefficients for singly- and doubly-charged ions of C, N, and O.The majority of thermal CT data used in astrophysics has been calculated with the Landau-Zener (LZ) method. Dr. Daniel Wolf Savin's laboratory results have demonstrated that LZ calculations of thermal CT cross section can be off by up to an order of magnitude. A few state-of-the-art molecular orbital close-coupling (MOCC) calculations also exist. But laboratory work has shown that without benchmark measurements, MOCC thermal CT cross section calculations can be off by up to a factor of 3.Dr. Savin and colleagues will carry out a combined program of laboratory measurements and modeling studies for CT of C2+, N+, N2+, O+, and O2+ on atomic H at thermal energies. They have already carried out such measurements for C+. The new measurements will be carried out using the Oak Ridge National Laboratory ion-atom merged-beams apparatus which is the only existing facility capable of carrying out the proposed thermal energy cross section measurements.The results will be used to benchmark state-of-the-art MOCC calculations. The measurements, in combination with benchmarked theory if needed, will also be used to produce CT rate coefficientswith an estimated accuracy of 20%. The group will publish simple fits to derived rate coefficientsso that the astrophysics community can use the new data in their studies of cosmic plasmas.Concurrent with the measurements, they will carry out modeling studies using CLOUDY toinvestigate the astrophysical implication of the new data as well as the implication due to anyinferred uncertainties in the unmeasured CT data for other ions. Some of the issues to be investigated include the role that CT plays in determining the ionization correction factors used toinfer the primordial He abundance from H II regions. The group will also study the role of CT in Lya clouds and the IGM, observations of which are used to constrain the chemical evolution of theuniverse and the shape of the metagalactic radiation field as a function of redshift.A large portion of this research project will be carried out by a Columbia University graduatestudent in partial fulfillment of the requirements for her/his Ph.D. Teaching and training of thestudent will be overseen by Dr. Savin and collaborators at Oak Ridge National Laboratory (ORNL), the University of Kentucky, and the University of Georgia-Athens. The research will thereby result in the education and training of a student to be a future scientist. In addition this work will enhance the Columbia/ORNL infrastructure for research and education which Dr. Savin has recently established with his collaborators at ORNL. The measurements will be carried out in collaboration with ORNL scientists using a unique ORNL facility. Lastly, to enhance scientific and technical understanding the group will broadly disseminate the results at conferences and publish themin the appropriate scientific journals.***
早已认识到,AST 0307203SAVINIT已确认,与原子氢的单一和双重充电的热能电荷转移(CT)在确定电离结构,热结构,发射光谱和吸收光谱方面起着重要作用。云层,银河系培养基(IGM)以及超新星残留物和Herbig-Haro物体的震动。这些来源的地面光谱观测用于解决天体物理学中的许多基本问题,例如原始的HE丰度,宇宙的化学演化,元层流辐射场的形状,作为红移,银河化学演化和恒星的函数核合成。解决这些问题的重要性尤为重要,是可靠的热能CT速率系数,用于C,N和O的单个C,N和O。天体物理学中使用的大多数热CT数据是用Landau-Zener(LZ)计算的。方法。 丹尼尔·沃尔夫·萨维(Daniel Wolf Savin)博士的实验室结果表明,热CT横截面的LZ计算可以通过数量级的顺序排列。还存在一些最先进的分子轨道关闭偶联(MOCC)计算。但是实验室的工作表明,如果没有基准测量,MOCC热CT横截面计算可以减少3.dr。 Savin及其同事将对在热能量下的原子H上进行C2+,N+,N2+,O+和O2+CT的实验室测量和建模研究。 他们已经对C+进行了此类测量。新的测量将使用橡树岭国家实验室离子原子梁合并式梁进行进行,这是唯一能够执行拟议热能横截面测量值的现有设施。 - ART MOCC计算。这些测量结果与基准理论(如果需要)结合使用,也将用于产生CT速率系数,估计精度为20%。 该小组将发布简单的拟合,以得出速率系数,即天体物理学社区可以在宇宙等离子体的研究中使用新数据。与测量结果相关,他们将使用Cloudy进行建模研究,以了解新数据的天体物理学含义以及新数据的天体物理学含义。其他离子的未测量CT数据中的任何引起的不确定性引起的含义。要调查的一些问题包括CT在确定使用HII区域的原始元素中的电离校正因子中所起的作用。该小组还将研究CT在LYA云和IGM中的作用,其观察结果用于限制Universe的化学演化以及元层辐射场的形状,这是RedShift的函数。该研究项目的大部分由哥伦比亚大学毕业生进行,以部分满足其博士学位的要求。萨维尔博士和橡树岭国家实验室(ORNL),肯塔基大学和乔治亚州大学的教学和培训将由Savin博士和合作者进行监督。这项研究将导致学生的教育和培训成为未来的科学家。此外,这项工作还将增强萨维尔博士最近与ORNL合作者建立的研究和教育基础设施。测量将与ORNL科学家合作使用独特的ORNL设施进行。最后,为了增强科学和技术理解,该小组将在会议上广泛传播结果,并将其发布在适当的科学期刊中。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Wolf Savin其他文献
Daniel Wolf Savin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Wolf Savin', 18)}}的其他基金
Laboratory Measurements of N2 Reacting with H3+ Isotopologues and Implications for Deuterated Astrochemistry
N2 与 H3 同位素体反应的实验室测量及其对氘代天体化学的影响
- 批准号:
2002461 - 财政年份:2020
- 资助金额:
$ 25.17万 - 项目类别:
Standard Grant
Laboratory Measurements of Dissociative Recombination with Cold Molecular Ions for Ground-Based Studies of Diffuse Molecular Clouds
用于弥散分子云地面研究的冷分子离子解离重组的实验室测量
- 批准号:
1907188 - 财政年份:2019
- 资助金额:
$ 25.17万 - 项目类别:
Standard Grant
Laboratory measurements of three deuterium substitution reactions important in interstellar chemistry
星际化学中重要的三种氘取代反应的实验室测量
- 批准号:
1613267 - 财政年份:2016
- 资助金额:
$ 25.17万 - 项目类别:
Standard Grant
Improving Models of Molecular Clouds and Planetary Atmospheres: Dissociative Recombination Measurements for Molecular Ions of Astronomical Interest
改进分子云和行星大气模型:天文感兴趣的分子离子的解离重组测量
- 批准号:
1107036 - 财政年份:2011
- 资助金额:
$ 25.17万 - 项目类别:
Continuing Grant
SHINE: Observationally Constraining the Physical Processes that Generate the Solar Wind
SHINE:观测限制产生太阳风的物理过程
- 批准号:
1060194 - 财政年份:2011
- 资助金额:
$ 25.17万 - 项目类别:
Continuing Grant
Development of a Novel Instrument to Study the Cosmic Origins of Organic Chemistry and the Cosmo-Chemical Pathway towards Life
开发一种新仪器来研究有机化学的宇宙起源和生命的宇宙化学途径
- 批准号:
0905832 - 财政年份:2009
- 资助金额:
$ 25.17万 - 项目类别:
Standard Grant
Improved Understanding of Molecular Clouds and Emission Line Objects with Laboratory Astrophysics Studies at the Heidelberg Ion Storage Ring
通过海德堡离子存储环的实验室天体物理学研究提高对分子云和发射线物体的理解
- 批准号:
0807436 - 财政年份:2008
- 资助金额:
$ 25.17万 - 项目类别:
Continuing Grant
Further Measurements of Thermal Energy Charge Transfer in Support of Ground-Based Astronomy
支持地面天文学的热能电荷转移的进一步测量
- 批准号:
0606960 - 财政年份:2006
- 资助金额:
$ 25.17万 - 项目类别:
Continuing Grant
Development of a Novel Laboratory Instrument for Studying Gas-Phase Negative Ion Chemistry
开发用于研究气相负离子化学的新型实验室仪器
- 批准号:
0520660 - 财政年份:2005
- 资助金额:
$ 25.17万 - 项目类别:
Standard Grant
相似国自然基金
同化双源宇宙射线中子观测改进绿洲农田土壤水分廓线与作物生物量模拟
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
近似数值模拟技术在宇宙学分析中的应用研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
甚大面积伽马射线(和宇宙线)空间望远镜若干关键问题的模拟研究
- 批准号:12173098
- 批准年份:2021
- 资助金额:62 万元
- 项目类别:面上项目
宇宙线高能粒子加速的理论和模拟实验研究
- 批准号:12135001
- 批准年份:2021
- 资助金额:313 万元
- 项目类别:重点项目
引力波波动效应数值模拟及其在宇宙学中的应用
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
WoU-MMA: Pinning the Generation of Ultra-High-Energy Cosmic Rays with First Principles Plasma Simulations
WoU-MMA:利用第一原理等离子体模拟来固定超高能宇宙射线的产生
- 批准号:
2308944 - 财政年份:2023
- 资助金额:
$ 25.17万 - 项目类别:
Standard Grant
Formation Processes of Heavy Elements in the Early Universe Elucidated by Superconducting Nanoelectronics, Large-Scale Numerical Simulations, and Data Science
通过超导纳米电子学、大规模数值模拟和数据科学阐明早期宇宙中重元素的形成过程
- 批准号:
23K20035 - 财政年份:2023
- 资助金额:
$ 25.17万 - 项目类别:
Fund for the Promotion of Joint International Research (International Leading Research )
Finding Cosmic Muon Energy with Special Relativity, and GEANT4 simulations
利用狭义相对论和 GEANT4 模拟寻找宇宙 μ 子能量
- 批准号:
572270-2022 - 财政年份:2022
- 资助金额:
$ 25.17万 - 项目类别:
University Undergraduate Student Research Awards
Initial data for numerical relativity simulations associated with standing waves
与驻波相关的数值相对论模拟的初始数据
- 批准号:
22K03636 - 财政年份:2022
- 资助金额:
$ 25.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of Surface Roughness Dependence on Rarefied Aerodynamics based on Hypersonic Rarefied Wind Tunnel Measurement and Molecular Dynamics Simulations
基于高超声速稀薄风洞测量和分子动力学模拟的表面粗糙度对稀薄空气动力学的依赖性研究
- 批准号:
21K04487 - 财政年份:2021
- 资助金额:
$ 25.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)